您的位置:首页 > 数据库 > Memcache

java之XMemcached使用及源码详解

2015-02-03 09:18 246 查看
转载请注明出处:http://blog.csdn.net/tang9140/article/details/43445511

前言

本文主要讲述如何使用XMemcached客户端与Memcached服务端进行交互。通过XMemcached的API调用与Memcached的set/get命令对比及跟踪XMemcached源码,使大家对XMemcached的API有更深层次的理解,能够从底层上去了解其工作原理,从而能在项目中进行一些针对性的接口封闭及优化工作。

是叫Memcache还是Memcached?

网上有种说法是:Memcache是这个项目的名称,而memcached是它服务器端的主程序文件名。我又查了Memcache的官网http://memcached.org/,home页一直引用的是Memcached。姑且不论该叫什么名称合适,在这里统一称呼为Memcached,仅代表我的个人习惯。

Memcached简介

言归正题,Memcached是分布式高性能内存级别的对象缓存系统,并且是开源免费项目。它的所有key-value数据全部放在内存中,这是其高效的一个原因,同时也意味着系统关闭时,全部数据就会丢失。利用Memcached作用缓存系统,可以减少动态网站数据库查询次数,提升网站性能,常作为web2.0网站缓存解决方案。Memcached客户端提供多种语言API支持,像C/C++、Perl、PHP、Java、C#、Ruby等。

Memcached的Java客户端目前有3个
  • Memcached Client for Java 比 SpyMemcached更稳定、更早、更广泛;
  • SpyMemcached 比 Memcached Client for Java更高效;
  • XMemcached 比 SpyMemcache并发效果更好;

前两个客户端的使用,这里不做详述。

分三部分讲解XMemcached客户端

  • XMemcached客户端使用演示
  • set/get方法源码追踪
  • 对比Memcached的set/get命令

一、XMemcached客户端使用演示

本人是用Maven构建的项目,为了使用XMemcached,需要在pom.xml中加入
<dependency>
<groupId>com.googlecode.xmemcached</groupId>
<artifactId>xmemcached</artifactId>
<version>1.4.3</version>
</dependency>

XMemcached使用示例Demo如下

public static void main(String[] args) throws IOException {
MemcachedClientBuilder builder = new XMemcachedClientBuilder(AddrUtil.getAddresses("127.0.0.1:11211"));
MemcachedClient memcachedClient = builder.build();

try {
memcachedClient.set("key", 0, "Hello World!");
String value = memcachedClient.get("key");
System.out.println("key值:" + value);
}
catch (Exception e) {
e.printStackTrace();
}
try {
memcachedClient.shutdown();
}
catch (IOException e) {
e.printStackTrace();
}
}

接下来详细追踪下这两个方法的源码

二、set/get方法源码追踪

1.set

大家可以用过debug模式,一步步追踪set及get过程,具体过程不演示了,先直接列出set方法大概的源码调用过程如下(中间可能省略了某些方法调用)
XMemcachedClient.set()
XMemcachedClient.sendCommand()
MemcachedConnector.send()
AbstractSession.write()
MemcachedTCPSession.wrapMessage()
TextStoreCommand.encode()
TextStoreCommand.encodeValue()
SerializingTranscoder.encode()
BaseSerializingTranscoder.serialize()

先是调用XMemcacheClient.set(final String key, final int exp, final Object value)方法,key形参对应字符串“key”,exp形参对应整数0(表达缓存永不过期),value形参对应字符串“Hello World!”。经过上述一系列方法调用,最终调用到SerializingTranscoder.encode(Object o)方法,此时形参o接收到的实参值就是set的字符串“Hello World!”,该方法体代码如下:

public final CachedData encode(Object o) {
byte[] b = null;
int flags = 0;
if (o instanceof String) {
b = encodeString((String) o);
} else if (o instanceof Long) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeLong((Long) o);
}
flags |= SPECIAL_LONG;
} else if (o instanceof Integer) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeInt((Integer) o);
}
flags |= SPECIAL_INT;
} else if (o instanceof Boolean) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeBoolean((Boolean) o);
}
flags |= SPECIAL_BOOLEAN;
} else if (o instanceof Date) {
b = this.transcoderUtils.encodeLong(((Date) o).getTime());
flags |= SPECIAL_DATE;
} else if (o instanceof Byte) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeByte((Byte) o);
}
flags |= SPECIAL_BYTE;
} else if (o instanceof Float) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeInt(Float
.floatToRawIntBits((Float) o));
}
flags |= SPECIAL_FLOAT;
} else if (o instanceof Double) {
if (this.primitiveAsString) {
b = encodeString(o.toString());
} else {
b = this.transcoderUtils.encodeLong(Double
.doubleToRawLongBits((Double) o));
}
flags |= SPECIAL_DOUBLE;
} else if (o instanceof byte[]) {
b = (byte[]) o;
flags |= SPECIAL_BYTEARRAY;
} else {
b = serialize(o);
flags |= SERIALIZED;
}
assert b != null;
if (this.primitiveAsString) {
// It is not be SERIALIZED,so change it to string type
if ((flags & SERIALIZED) == 0) {
flags = 0;
}
}
if (b.length > this.compressionThreshold) {
byte[] compressed = compress(b);
if (compressed.length < b.length) {
if (log.isDebugEnabled()) {
log.debug("Compressed " + o.getClass().getName() + " from "
+ b.length + " to " + compressed.length);
}
b = compressed;
flags |= COMPRESSED;
} else {
if (log.isDebugEnabled()) {
log.debug("Compression increased the size of "
+ o.getClass().getName() + " from " + b.length
+ " to " + compressed.length);
}
}
}
return new CachedData(flags, b, this.maxSize, -1);
}

先是申明了局部变量b(用来存储需要放入memcached服务器的字节数组)及flags(用来存储标志信息)。然后依次判断对象o是否字符串类型、长整型类型等,并将对象o编码成相应的字节数组存放在局部变量b中。

特别注意第57行,当o的类型不是字符串、基本类型的包装类型及byte[]数组时,会调用BaseSerializingTranscoder.serialize()方法,该方法源代码如下:

protected byte[] serialize(Object o) {
if (o == null) {
throw new NullPointerException("Can't serialize null");
}
byte[] rv = null;
try {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream os = new ObjectOutputStream(bos);
os.writeObject(o);
os.close();
bos.close();
rv = bos.toByteArray();
} catch (IOException e) {
throw new IllegalArgumentException("Non-serializable object", e);
}
return rv;
}

很明显,该方法就是进行对象序列化,将Java对象转化成byte数组并返回。相信大家看到这里,应该明白了为什么自定义对象需要实现Serializable接口才能保存进Memcached中。如果数据对象没有实现Serializable接口,那么在进行对象序列化时,将会抛出IOException,最终抛出IllegalArgumentException,并提示Non-serializable object。

另着重说明下CachedData类的作用,该类封装了cas值(该值用来实现原子更新,即客户端每次发出更新请求时,请求信息中都会附带该cas值,memcached服务端在收到请求后,会将该cas值与服务器中存储数据的cas值对比,如果相等,则用新的数据覆盖老的数据;否则,更新失败。在并发环境下特别有用)、data数据(即要缓存的数据值或者获取到的缓存数据,以byte[]数组形式存储),flag信息(标识byte[]数组额外数据类型信息及byte[]数组是否进行过压缩等信息,用一个int类型存储)及其它信息。

set源码分析到这里,下面说下get源码。

2.get

同样的,先列出get方法大概的源码调用过程如下:

XMemcachedClient.get()
XMemcachedClient.fetch0()
XMemcachedClient.sendCommand()
MemcachedConnector.send()
AbstractSession.write()
MemcachedTCPSession.wrapMessage()
TextGetCommand.encode()
SerializingTranscoder.decode()
SerializingTranscoder.decode0()
BaseSerializingTranscoder.deserialize()
先是调用XMemcacheClient.get(final String key)方法,key形参对应字符串“key"。从该方法一直到TextGetCommand.encode()调用,可以看作是组装get命令并发送到服务器过程,在收到服务器响应消息后,将响应消息组装成CachedData,并调用SerializingTranscoder.decode(CachedData d)方法,即进行字节流解码工作。该方法代码如下:

public final Object decode(CachedData d) {
byte[] data = d.getData();

int flags = d.getFlag();
if ((flags & COMPRESSED) != 0) {
data = decompress(d.getData());
}
flags = flags & SPECIAL_MASK;
return decode0(d,data, flags);
}
先是获取字节数组及标志信息,根据标志位决定是否要解压缩字节数组。最后调用decode0(CachedData cachedData,byte[] data, int flags)方法,代码如下:

protected final Object decode0(CachedData cachedData,byte[] data, int flags) {
Object rv = null;
if ((cachedData.getFlag() & SERIALIZED) != 0 && data != null) {
rv = deserialize(data);
} else {
if (this.primitiveAsString) {
if (flags == 0) {
return decodeString(data);
}
}
if (flags != 0 && data != null) {
switch (flags) {
case SPECIAL_BOOLEAN:
rv = Boolean.valueOf(this.transcoderUtils
.decodeBoolean(data));
break;
case SPECIAL_INT:
rv = Integer.valueOf(this.transcoderUtils.decodeInt(data));
break;
case SPECIAL_LONG:
rv = Long.valueOf(this.transcoderUtils.decodeLong(data));
break;
case SPECIAL_BYTE:
rv = Byte.valueOf(this.transcoderUtils.decodeByte(data));
break;
case SPECIAL_FLOAT:
rv = new Float(Float.intBitsToFloat(this.transcoderUtils
.decodeInt(data)));
break;
case SPECIAL_DOUBLE:
rv = new Double(Double
.longBitsToDouble(this.transcoderUtils
.decodeLong(data)));
break;
case SPECIAL_DATE:
rv = new Date(this.transcoderUtils.decodeLong(data));
break;
case SPECIAL_BYTEARRAY:
rv = data;
break;
default:
log
.warn(String.format("Undecodeable with flags %x",
flags));
}
} else {
rv = decodeString(data);
}
}
return rv;
}

上面方法实际上就是encode(Object o)方法的逆向实现,即将字节数组转化成Object对象。注意第4行调用了deserialize(byte[] in)方法,该方法代码如下(省略了catch、finally部分):

protected Object deserialize(byte[] in) {
Object rv = null;
ByteArrayInputStream bis = null;
ObjectInputStream is = null;
try {
if (in != null) {
bis = new ByteArrayInputStream(in);
is = new ObjectInputStream(bis) {
@Override
protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException, ClassNotFoundException {
try {
//When class is not found,try to load it from context class loader.
return super.resolveClass(desc);
} catch (ClassNotFoundException e) {
return Thread.currentThread().getContextClassLoader().loadClass(desc.getName());
}
}
};
rv = is.readObject();

}
}
...
return rv;
}
上述代码就是反序列化对象并返回。每次反序列化操作,得到的都是一个全新对象,对该新对象进行的任何操作并不会影响memcached中存储的值。

三、对比Memcached的set/get命令

除了上述通过java代码与memcached交互外,我们还可以直接通过命令方式与其交互。步骤如下:

1.先打开cmd窗口

2.通过telnet连上memcached服务器,命令如下:

telnet 127.0.0.1 11211

3.若连接成功,可直接输入命令与memcached服务器交互。

1.存储命令

格式如下

<command name> <key> <flags> <exptime> <bytes>
<data block>
参数说明如下:

<command name> set/add/replace

<key> 查找关键字

<flags> 客户机使用它存储关于键值对的额外信息

<exptime> 该数据的存活时间,0表示永远

<bytes> 存储字节数

<data block> 存储的数据块(可直接理解为key-value结构中的value)

各存储命令特别说明:

  • set命令在key不存在时,进行添加操作,否则进行更新操作。
  • add命令在key不存在时,才能添加成功
  • replace命令在key存在时,才能替换成功

实例演示:

set myname 0 0 9
super man
STORED

2.读取命令

get key [key1]...

获取一个或多个键值,键之间以空格分隔。

实例演示:

get myname
VALUE myname 0 9
super man
END

除了上述常用命令外,还有gets、cas、stats等命令,大家有兴趣的可以去学习下。

3.类比

类比下Xmemcached客户端使用,不难发现很有趣的地方:

set命令中<key>和<exptime>分别对应XMemcacheClient.set(final String key, final int exp, final Object value)方法中的key和exp参数。而<flags>和<data block>则对应CachedData封装类的flag和data成员变量。

get命令<key>对应到XMemcacheClient.get(final String key)方法的key参数,get命令的返回结果对应SerializingTranscoder.decode(CachedData d)方法的参数d,d的类型是CachedData,该类正是封装了flag和data信息。

通过上面的对比,不难发现,无论是Memcached命令还是Xmemcached客户端,都不过是memcached客户端一种实现而已,他们遵守相同的请求及应答消息规范。更底层来看,这两种方式都是通过建立tcp连接后,然后发送符合memcached约定的请求消息;在接收到memcached服务器应答消息后,也是按照memcached的应答消息约定进行解码(在Xmemcached客户端利用了flag字段实现将数据字节数组转化成应用层需要的类型)。

换句话说:Memcached缓存系统提供了服务端的实现(c语言),并约定了客户端与服务器进行通信的消息格式,更准确来说是字节流格式(通过tcp方式通信)。不同语言客户端,仅仅是这一规范的实现而已。当然Memcached已经提供了大部分语言的客户端实现,不过你也可以自己开发出一个客户端实现。

四、如何优化Xmemcached客户端代码,提高效率

从前面的源码分析可以看出,如果存入Memcached的是bean对象,需要实现Serializable接口以支持java对象序列化。据我了解,java自带的对象序列化,不仅序列化和反序化操作耗时,而且生成的字节数组也比较大。因此可以考虑换一种编解码技术,本人推荐使用fastjson,其不仅效率过,而且生成的json串体积小。其它优化措施,如果有想到,再补充



版权声明:本文为博主原创文章,未经博主允许不得转载。

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: