您的位置:首页 > 编程语言 > Java开发

java集合框架中HashMap源码(基于JDK1.6)

2015-01-07 16:28 531 查看
基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用
null 值和 null 键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和
put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。

HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

通常,默认加载因子 (.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数HashMap 类的操作中,包括
get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。

注意,此实现不是同步的。如果多个线程同时访问一个哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须 保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的任何操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用
Collections.synchronizedMap

方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的非同步访问,如下所示:

Map m = Collections.synchronizedMap(new HashMap(...));

由所有此类的“collection 视图方法”所返回的迭代器都是快速失败 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的remove 方法,其他任何时间任何方式的修改,迭代器都将抛出
ConcurrentModificationException
。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

以下为基于JDK1.6的HashMap集合的源码:

<span style="font-size:14px;"><span style="font-size:14px;">package java.util;
import java.util.*; // for javadoc (till 6280605 is fixed)
import java.io.*;

public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{

/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;

/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry[] table;

/**
* The number of key-value mappings contained in this map.
*/
transient int size;

/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
int threshold;

/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;

/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash).  This field is used to make iterators on Collection-views of
* the HashMap fail-fast.  (See ConcurrentModificationException).
*/
transient volatile int modCount;

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param  initialCapacity the initial capacity
* @param  loadFactor      the load factor
* @throws IllegalArgumentException if the initial capacity is negative
*         or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);

// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;

this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param  initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}

/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param   m the map whose mappings are to be placed in this map
* @throws  NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}

// internal utilities

/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted.  (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
void init() {
}

/**
* Value representing null keys inside tables.
*/
static final Object NULL_KEY = new Object();

/**
* Returns internal representation for key. Use NULL_KEY if key is null.
*/
static <T> T maskNull(T key) {
return key == null ? (T)NULL_KEY : key;
}

/**
* Returns key represented by specified internal representation.
*/
static <T> T unmaskNull(T key) {
return (key == NULL_KEY ? null : key);
}

/**
* Returns a hash value for the specified object.  In addition to
* the object's own hashCode, this method applies a "supplemental
* hash function," which defends against poor quality hash functions.
* This is critical because HashMap uses power-of two length
* hash tables.<p>
*
* The shift distances in this function were chosen as the result
* of an automated search over the entire four-dimensional search space.
*/
static int hash(Object x) {
int h = x.hashCode();

h += ~(h << 9);
h ^=  (h >>> 14);
h +=  (h << 4);
h ^=  (h >>> 10);
return h;
}

/**
* Checks for equality of non-null reference x and possibly-null y.
*/
static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}

/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
return h & (length-1);
}

/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}

/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}

/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}.  (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry<K,V> e = table[i];
while (true) {
if (e == null)
return null;
if (e.hash == hash && eq(k, e.key))
return e.value;
e = e.next;
}
}

/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param   key   The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry e = table[i];
while (e != null) {
if (e.hash == hash && eq(k, e.key))
return true;
e = e.next;
}
return false;
}

/**
* Returns the entry associated with the specified key in the
* HashMap.  Returns null if the HashMap contains no mapping
* for the key.
*/
Entry<K,V> getEntry(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry<K,V> e = table[i];
while (e != null && !(e.hash == hash && eq(k, e.key)))
e = e.next;
return e;
}

/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
*         <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
K k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);

for (Entry<K,V> e = table[i]; e != null; e = e.next) {
if (e.hash == hash && eq(k, e.key)) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}

modCount++;
addEntry(hash, k, value, i);
return null;
}

/**
* This method is used instead of put by constructors and
* pseudoconstructors (clone, readObject).  It does not resize the table,
* check for comodification, etc.  It calls createEntry rather than
* addEntry.
*/
private void putForCreate(K key, V value) {
K k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);

/**
* Look for preexisting entry for key.  This will never happen for
* clone or deserialize.  It will only happen for construction if the
* input Map is a sorted map whose ordering is inconsistent w/ equals.
*/
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
if (e.hash == hash && eq(k, e.key)) {
e.value = value;
return;
}
}

createEntry(hash, k, value, i);
}

void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue());
}
}

/**
* Rehashes the contents of this map into a new array with a
* larger capacity.  This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
*        must be greater than current capacity unless current
*        capacity is MAXIMUM_CAPACITY (in which case value
*        is irrelevant).
*/
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}

Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}

/**
* Transfers all entries from current table to newTable.
*/
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}

/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;

/*
* Expand the map if the map if the number of mappings to be added
* is greater than or equal to threshold.  This is conservative; the
* obvious condition is (m.size() + size) >= threshold, but this
* condition could result in a map with twice the appropriate capacity,
* if the keys to be added overlap with the keys already in this map.
* By using the conservative calculation, we subject ourself
* to at most one extra resize.
*/
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}

for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry<? extends K, ? extends V> e = i.next();
put(e.getKey(), e.getValue());
}
}

/**
* Removes the mapping for the specified key from this map if present.
*
* @param  key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
*         <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}

/**
* Removes and returns the entry associated with the specified key
* in the HashMap.  Returns null if the HashMap contains no mapping
* for this key.
*/
Entry<K,V> removeEntryForKey(Object key) {
Object k = maskNull(key);
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;

while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && eq(k, e.key)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}

return e;
}

/**
* Special version of remove for EntrySet.
*/
Entry<K,V> removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;

Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
Object k = maskNull(entry.getKey());
int hash = hash(k);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;

while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}

return e;
}

/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}

/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
*         specified value
*/
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();

Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}

/**
* Special-case code for containsValue with null argument
*/
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}

/**
* Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
* values themselves are not cloned.
*
* @return a shallow copy of this map
*/
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);

return result;
}

static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
final int hash;
Entry<K,V> next;

/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}

public K getKey() {
return HashMap.<K>unmaskNull(key);
}

public V getValue() {
return value;
}

public V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}

public int hashCode() {
return (key==NULL_KEY ? 0 : key.hashCode()) ^
(value==null   ? 0 : value.hashCode());
}

public String toString() {
return getKey() + "=" + getValue();
}

/**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/
void recordAccess(HashMap<K,V> m) {
}

/**
* This method is invoked whenever the entry is
* removed from the table.
*/
void recordRemoval(HashMap<K,V> m) {
}
}

/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket.  It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
if (size++ >= threshold)
resize(2 * table.length);
}

/**
* Like addEntry except that this version is used when creating entries
* as part of Map construction or "pseudo-construction" (cloning,
* deserialization).  This version needn't worry about resizing the table.
*
* Subclass overrides this to alter the behavior of HashMap(Map),
* clone, and readObject.
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
size++;
}

private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next;	// next entry to return
int expectedModCount;	// For fast-fail
int index;		// current slot
Entry<K,V> current;	// current entry

HashIterator() {
expectedModCount = modCount;
Entry[] t = table;
int i = t.length;
Entry<K,V> n = null;
if (size != 0) { // advance to first entry
while (i > 0 && (n = t[--i]) == null)
;
}
next = n;
index = i;
}

public boolean hasNext() {
return next != null;
}

Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();

Entry<K,V> n = e.next;
Entry[] t = table;
int i = index;
while (n == null && i > 0)
n = t[--i];
index = i;
next = n;
return current = e;
}

public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}

}

private class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}

private class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}

private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}

// Subclass overrides these to alter behavior of views' iterator() method
Iterator<K> newKeyIterator()   {
return new KeyIterator();
}
Iterator<V> newValueIterator()   {
return new ValueIterator();
}
Iterator<Map.Entry<K,V>> newEntryIterator()   {
return new EntryIterator();
}

// Views

private transient Set<Map.Entry<K,V>> entrySet = null;

/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa.  If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined.  The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*/
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}

private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}

/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa.  If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined.  The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*/
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}

private class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}

/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa.  If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined.  The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations.  It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a set view of the mappings contained in this map
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}

private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}

/**
* Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
* serialize it).
*
* @serialData The <i>capacity</i> of the HashMap (the length of the
*		   bucket array) is emitted (int), followed by the
*		   <i>size</i> of the HashMap (the number of key-value
*		   mappings), followed by the key (Object) and value (Object)
*		   for each key-value mapping represented by the HashMap
*             The key-value mappings are emitted in the order that they
*             are returned by <tt>entrySet().iterator()</tt>.
*
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
Iterator<Map.Entry<K,V>> i = entrySet().iterator();

// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();

// Write out number of buckets
s.writeInt(table.length);

// Write out size (number of Mappings)
s.writeInt(size);

// Write out keys and values (alternating)
while (i.hasNext()) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}

private static final long serialVersionUID = 362498820763181265L;

/**
* Reconstitute the <tt>HashMap</tt> instance from a stream (i.e.,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();

// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];

init();  // Give subclass a chance to do its thing.

// Read in size (number of Mappings)
int size = s.readInt();

// Read the keys and values, and put the mappings in the HashMap
for (int i=0; i<size; i++) {
K key = (K) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}

// These methods are used when serializing HashSets
int   capacity()     { return table.length; }
float loadFactor()   { return loadFactor;   }
}</span></span>
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息