您的位置:首页 > 编程语言 > C语言/C++

C语言面向对象编程(五):单链表实现

2014-12-16 18:58 483 查看
前面我们介绍了如何在 C 语言中引入面向对象语言的一些特性来进行面向对象编程,从本篇开始,我们使用前面提到的技巧,陆续实现几个例子,最后呢,会提供一个基本的 http server 实现(使用 libevent )。在这篇文章里,我们实现一个通用的数据结构:单链表。

这里实现的单链表,可以存储任意数据类型,支持增、删、改、查找、插入等基本操作。(本文提供的是完整代码,可能有些长。)

下面是头文件:

[cpp] view
plaincopy





#ifndef SLIST_H

#define SLIST_H

#ifdef __cplusplus

extern "C" {

#endif

#define NODE_T(ptr, type) ((type*)ptr)

struct slist_node {

struct slist_node * next;

};

typedef void (*list_op_free_node)(struct slist_node *node);

/*

* return 0 on hit key, else return none zero

*/

typedef int (*list_op_key_hit_test)(struct slist_node *node, void *key);

struct single_list {

/* all the members must not be changed manually by callee */

struct slist_node * head;

struct slist_node * tail;

int size; /* length of the list, do not change it manually*/

/* free method to delete the node

*/

void (*free_node)(struct slist_node *node);

/*

* should be set by callee, used to locate node by key(*_by_key() method)

* return 0 on hit key, else return none zero

*/

int (*key_hit_test)(struct slist_node *node, void *key);

struct single_list *(*add)(struct single_list * list, struct slist_node * node);

struct single_list *(*insert)(struct single_list * list, int pos, struct slist_node *node);

/* NOTE: the original node at the pos will be freed by free_node */

struct single_list *(*replace)(struct single_list *list, int pos, struct slist_node *node);

struct slist_node *(*find_by_key)(struct single_list *, void * key);

struct slist_node *(*first)(struct single_list* list);

struct slist_node *(*last)(struct single_list* list);

struct slist_node *(*at)(struct single_list * list, int pos);

struct slist_node *(*take_at)(struct single_list * list, int pos);

struct slist_node *(*take_by_key)(struct single_list * list, void *key);

struct single_list *(*remove)(struct single_list * list, struct slist_node * node);

struct single_list *(*remove_at)(struct single_list *list, int pos);

struct single_list *(*remove_by_key)(struct single_list *list, void *key);

int (*length)(struct single_list * list);

void (*clear)(struct single_list * list);

void (*deletor)(struct single_list *list);

};

struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp);

#ifdef __cplusplus

}

#endif

#endif // SLIST_H

struct single_list 这个类,遵循我们前面介绍的基本原则,不再一一细说。有几点需要提一下:

我们定义了 slist_node 作为链表节点的基类,用户自定义的节点,都必须从 slist_node 继承
为了支持节点( node )的释放,我们引入一个回调函数 list_op_free_node ,这个回调需要在创建链表时传入
为了支持查找,引入另外一个回调函数 list_op_key_hit_test

好了,下面看实现文件:

[cpp] view
plaincopy





#include "slist.h"

#include <malloc.h>

static struct single_list * _add_node(struct single_list *list, struct slist_node *node)

{

if(list->tail)

{

list->tail->next = node;

node->next = 0;

list->tail = node;

list->size++;

}

else

{

list->head = node;

list->tail = node;

node->next = 0;

list->size = 1;

}

return list;

}

static struct single_list * _insert_node(struct single_list * list, int pos, struct slist_node *node)

{

if(pos < list->size)

{

int i = 0;

struct slist_node * p = list->head;

struct slist_node * prev = list->head;

for(; i < pos; i++)

{

prev = p;

p = p->next;

}

if(p == list->head)

{

/* insert at head */

node->next = list->head;

list->head = node;

}

else

{

prev->next = node;

node->next = p;

}

if(node->next == 0) list->tail = node;

list->size++;

}

else

{

list->add(list, node);

}

return list;

}

static struct single_list * _replace(struct single_list * list, int pos, struct slist_node *node)

{

if(pos < list->size)

{

int i = 0;

struct slist_node * p = list->head;

struct slist_node * prev = list->head;

for(; i < pos; i++)

{

prev = p;

p = p->next;

}

if(p == list->head)

{

/* replace at head */

node->next = list->head->next;

list->head = node;

}

else

{

prev->next = node;

node->next = p->next;

}

if(node->next == 0) list->tail = node;

if(list->free_node) list->free_node(p);

else free(p);

}

return list;

}

static struct slist_node * _find_by_key(struct single_list *list, void * key)

{

if(list->key_hit_test)

{

struct slist_node * p = list->head;

while(p)

{

if(list->key_hit_test(p, key) == 0) return p;

p = p->next;

}

}

return 0;

}

static struct slist_node *_first_of(struct single_list* list)

{

return list->head;

}

static struct slist_node *_last_of(struct single_list* list)

{

return list->tail;

}

static struct slist_node *_node_at(struct single_list * list, int pos)

{

if(pos < list->size)

{

int i = 0;

struct slist_node * p = list->head;

for(; i < pos; i++)

{

p = p->next;

}

return p;

}

return 0;

}

static struct slist_node * _take_at(struct single_list * list, int pos)

{

if(pos < list->size)

{

int i = 0;

struct slist_node * p = list->head;

struct slist_node * prev = p;

for(; i < pos ; i++)

{

prev = p;

p = p->next;

}

if(p == list->head)

{

list->head = p->next;

if(list->head == 0) list->tail = 0;

}

else if(p == list->tail)

{

list->tail = prev;

prev->next = 0;

}

else

{

prev->next = p->next;

}

list->size--;

p->next = 0;

return p;

}

return 0;

}

static struct slist_node * _take_by_key(struct single_list * list, void *key)

{

if(list->key_hit_test)

{

struct slist_node * p = list->head;

struct slist_node * prev = p;

while(p)

{

if(list->key_hit_test(p, key) == 0) break;

prev = p;

p = p->next;

}

if(p)

{

if(p == list->head)

{

list->head = p->next;

if(list->head == 0) list->tail = 0;

}

else if(p == list->tail)

{

list->tail = prev;

prev->next = 0;

}

else

{

prev->next = p->next;

}

list->size--;

p->next = 0;

return p;

}

}

return 0;

}

static struct single_list *_remove_node(struct single_list * list, struct slist_node * node)

{

struct slist_node * p = list->head;

struct slist_node * prev = p;

while(p)

{

if(p == node) break;

prev = p;

p = p->next;

}

if(p)

{

if(p == list->head)

{

list->head = list->head->next;

if(list->head == 0) list->tail = 0;

}

else if(p == list->tail)

{

prev->next = 0;

list->tail = prev;

}

else

{

prev->next = p->next;

}

if(list->free_node) list->free_node(p);

else free(p);

list->size--;

}

return list;

}

static struct single_list *_remove_at(struct single_list *list, int pos)

{

if(pos < list->size)

{

int i = 0;

struct slist_node * p = list->head;

struct slist_node * prev = p;

for(; i < pos ; i++)

{

prev = p;

p = p->next;

}

if(p == list->head)

{

list->head = p->next;

if(list->head == 0) list->tail = 0;

}

else if(p == list->tail)

{

list->tail = prev;

prev->next = 0;

}

else

{

prev->next = p->next;

}

if(list->free_node) list->free_node(p);

else free(p);

list->size--;

}

return list;

}

static struct single_list *_remove_by_key(struct single_list *list, void *key)

{

if(list->key_hit_test)

{

struct slist_node * p = list->head;

struct slist_node * prev = p;

while(p)

{

if(list->key_hit_test(p, key) == 0) break;

prev = p;

p = p->next;

}

if(p)

{

if(p == list->head)

{

list->head = list->head->next;

if(list->head == 0) list->tail = 0;

}

else if(p == list->tail)

{

prev->next = 0;

list->tail = prev;

}

else

{

prev->next = p->next;

}

if(list->free_node) list->free_node(p);

else free(p);

list->size--;

}

}

return list;

}

static int _length_of(struct single_list * list)

{

return list->size;

}

static void _clear_list(struct single_list * list)

{

struct slist_node * p = list->head;

struct slist_node * p2;

while(p)

{

p2 = p;

p = p->next;

if(list->free_node) list->free_node(p2);

else free(p2);

}

list->head = 0;

list->tail = 0;

list->size = 0;

}

static void _delete_single_list(struct single_list *list)

{

list->clear(list);

free(list);

}

struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp)

{

struct single_list *list = (struct single_list *)malloc(sizeof(struct single_list));

list->head = 0;

list->tail = 0;

list->size = 0;

list->free_node = op_free;

list->key_hit_test = op_cmp;

list->add = _add_node;

list->insert = _insert_node;

list->replace = _replace;

list->find_by_key = _find_by_key;

list->first = _first_of;

list->last = _last_of;

list->at = _node_at;

list->take_at = _take_at;

list->take_by_key = _take_by_key;

list->remove = _remove_node;

list->remove_at = _remove_at;

list->remove_by_key = _remove_by_key;

list->length = _length_of;

list->clear = _clear_list;

list->deletor = _delete_single_list;

return list;

}

上面的代码就不一一细说了,下面是测试代码:

[cpp] view
plaincopy





/* call 1 or N arguments function of struct */

#define ST_CALL(THIS,func,args...) ((THIS)->func(THIS,args))

/* call none-arguments function of struct */

#define ST_CALL_0(THIS,func) ((THIS)->func(THIS))

struct int_node {

struct slist_node node;

int id;

};

struct string_node {

struct slist_node node;

char name[16];

};

static int int_free_flag = 0;

static void _int_child_free(struct slist_node *node)

{

free(node);

if(!int_free_flag)

{

int_free_flag = 1;

printf("int node free\n");

}

}

static int _int_slist_hittest(struct slist_node * node, void *key)

{

struct int_node * inode = NODE_T(node, struct int_node);

int ikey = (int)key;

return (inode->id == ikey ? 0 : 1);

}

static int string_free_flag = 0;

static void _string_child_free(struct slist_node *node)

{

free(node);

if(!string_free_flag)

{

string_free_flag = 1;

printf("string node free\n");

}

}

static int _string_slist_hittest(struct slist_node * node, void *key)

{

struct string_node * sn = (struct string_node*)node;

return strcmp(sn->name, (char*)key);

}

void int_slist_test()

{

struct single_list * list = new_single_list(_int_child_free, _int_slist_hittest);

struct int_node * node = 0;

struct slist_node * bn = 0;

int i = 0;

printf("create list && nodes:\n");

for(; i < 100; i++)

{

node = (struct int_node*)malloc(sizeof(struct int_node));

node->id = i;

if(i%10)

{

list->add(list, node);

}

else

{

list->insert(list, 1, node);

}

}

printf("create 100 nodes end\n----\n");

printf("first is : %d, last is: %d\n----\n",

NODE_T( ST_CALL_0(list, first), struct int_node )->id,

NODE_T( ST_CALL_0(list, last ), struct int_node )->id);

assert(list->size == 100);

printf("list traverse:\n");

for(i = 0; i < 100; i++)

{

if(i%10 == 0) printf("\n");

bn = list->at(list, i);

node = NODE_T(bn, struct int_node);

printf(" %d", node->id);

}

printf("\n-----\n");

printf("find by key test, key=42:\n");

bn = list->find_by_key(list, (void*)42);

assert(bn != 0);

node = NODE_T(bn, struct int_node);

printf("find node(key=42), %d\n------\n", node->id);

printf("remove node test, remove the 10th node:\n");

bn = list->at(list, 10);

node = NODE_T(bn, struct int_node);

printf(" node 10 is: %d\n", node->id);

printf(" now remove node 10\n");

list->remove_at(list, 10);

printf(" node 10 was removed, check node 10 again:\n");

bn = list->at(list, 10);

node = NODE_T(bn, struct int_node);

printf(" now node 10 is: %d\n------\n", node->id);

printf("replace test, replace node 12 with id 1200:\n");

bn = list->at(list, 12);

node = NODE_T(bn, struct int_node);

printf(" now node 12 is : %d\n", node->id);

node = (struct int_node*)malloc(sizeof(struct int_node));

node->id = 1200;

list->replace(list, 12, node);

bn = list->at(list, 12);

node = NODE_T(bn, struct int_node);

printf(" replaced, now node 12 is : %d\n----\n", node->id);

printf("test remove:\n");

ST_CALL(list, remove, bn);

bn = ST_CALL(list, find_by_key, (void*)1200);

assert(bn == 0);

printf("test remove ok\n----\n");

printf("test remove_by_key(90):\n");

ST_CALL(list, remove_by_key, (void*)90);

bn = ST_CALL(list, find_by_key, (void*)90);

assert(bn == 0);

printf("test remove_by_key(90) end\n----\n");

printf("test take_at(80):\n");

bn = ST_CALL(list, take_at, 80);

printf(" node 80 is: %d\n", NODE_T(bn, struct int_node)->id);

free(bn);

printf("test take_at(80) end\n");

int_free_flag = 0;

printf("delete list && nodes:\n");

list->deletor(list);

printf("delete list && nodes end\n");

printf("\n test add/insert/remove/delete/find_by_key/replace...\n");

}

void string_slist_test()

{

struct single_list * list = new_single_list(_string_child_free, _string_slist_hittest);

}

void slist_test()

{

int_slist_test();

string_slist_test();

}

测试代码里主要演示了:

自定义链表节点类型
定义释放回调
定义用于查找的 hit test 回调
如何创建链表
如何使用( add 、remove 、 take 、find 、 insert 等)

相信到这里,单链表的使用已经不成问题了。

以单链表为基础,可以进一步实现很多数据结构,比如树(兄弟孩子表示法),比如 key-value 链表等等。接下来根据例子的需要,会择机进行展示。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息