您的位置:首页 > 编程语言 > Java开发

java.util.concurrent 之ConcurrentHashMap 源码分析

2014-02-12 14:15 706 查看
/article/4180548.html

最近有点想研究下java.util.concurrent 包下的一些类中的实现,在现实中也对这包里的类应用不少,但都没怎么去深入理解,只是听说里面的实现在高并发中有不错的性能。。接下将对里面的几个比较常用的类的源码进行分析。。

ConcurrentHashMap类
研究源码时,我一般喜欢从实际的应用中去一步步调试分析。。这样理解起来容易很多。

实际应用:

Java代码


ConcurrentMap<String, String> map = new ConcurrentHashMap<String, String>();

String oldValue = map.put("zhxing", "value");

String oldValue1 = map.put("zhxing", "value1");

String oldValue2 = map.putIfAbsent("zhxing", "value2");

String value = map.get("zhxing");

System.out.println("oldValue:" + oldValue);

System.out.println("oldValue1:" + oldValue1);

System.out.println("oldValue2:" + oldValue2);

System.out.println("value:" + value);

输出结果:

Java代码


oldValue:null

oldValue1:value

oldValue2:value1

value:value1

先从new 方法开始

Java代码


/**

* Creates a new, empty map with a default initial capacity (16), load

* factor (0.75) and concurrencyLevel(也就是锁的个数) (16).

*

*/

public ConcurrentHashMap() {

this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);

}

// 当都是默认的设置参数

public ConcurrentHashMap(int initialCapacity, float loadFactor,

int concurrencyLevel) {

if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)

throw new IllegalArgumentException();

// MAX_SEGMENTS = 1 << 16,锁的个数有限制

if (concurrencyLevel > MAX_SEGMENTS)

concurrencyLevel = MAX_SEGMENTS;

// Find power-of-two sizes best matching arguments

// 这里是根据设定的并发数查找最优的并发数

int sshift = 0;

int ssize = 1;

while (ssize < concurrencyLevel) {

++sshift;

ssize <<= 1;// 不断右移

}

// 到这里,sshift=4,ssize=16.因为concurrencyLevel=16=1<<4

segmentShift = 32 - sshift;// =16

segmentMask = ssize - 1;// =3

// 创建了16个分段(Segment),其实每个分段相当于一个带锁的map

this.segments = Segment.newArray(ssize);

if (initialCapacity > MAXIMUM_CAPACITY)

initialCapacity = MAXIMUM_CAPACITY;

// 这里是计算每个分段存储的容量

int c = initialCapacity / ssize;// c=16/16=1

if (c * ssize < initialCapacity)// 防止分段的相加的容量小于总容量

++c;

int cap = 1;

// 如果初始容量比cap的容量小,则已双倍的容量增加

while (cap < c)

cap <<= 1;

// 分别new分段

for (int i = 0; i < this.segments.length; ++i)

this.segments[i] = new Segment<K, V>(cap, loadFactor);

}

这里提到了一个Segment 这个类,其实这个是总map 的分段,就是为了实现分段锁机制。

Java代码


/**

* Segments are specialized versions of hash tables. This subclasses from

* ReentrantLock opportunistically, just to simplify some locking and avoid

* separate construction. map 的分段实现,扩展了锁机制

*/

static final class Segment<K, V> extends ReentrantLock implements

Serializable {

//。。。

Segment(int initialCapacity, float lf) {

loadFactor = lf;

// 这个是开始初始化map容器了

setTable(HashEntry.<K, V> newArray(initialCapacity));

}

/**

* Sets table to new HashEntry array. Call only while holding lock or in

* constructor.

*/

void setTable(HashEntry<K, V>[] newTable) {

threshold = (int) (newTable.length * loadFactor);

table = newTable;

}

}

// 这个是实际保存到map的东西了,如果对HashMap源码有了解的话,是不是觉得很像Hash.Entry,但又没实现Map.Entry接口,它是用另外个类WriteThroughEntry

// 来实现这个Map.Entry接口的。

static final class HashEntry<K, V> {

final K key;

final int hash;

volatile V value;

final HashEntry<K, V> next;

HashEntry(K key, int hash, HashEntry<K, V> next, V value) {

this.key = key;

this.hash = hash;

this.next = next;

this.value = value;

}

@SuppressWarnings("unchecked")

// 新建数组,保存着map里的键值对

static final <K, V> HashEntry<K, V>[] newArray(int i) {

return new HashEntry[i];

}

get方法实现

Java代码


//ConcurrentHashMap类

// 在这里发现,get操作几乎是不带锁的。。效率提高很多

public V get(Object key) {

// key不能为null 。。

int hash = hash(key); // throws NullPointerException if key null

return segmentFor(hash).get(key, hash);

}

// 这个hash方式不太懂,估计是为了能均匀分布吧

static int hash(Object x) {

int h = x.hashCode();

h += ~(h << 9);

h ^= (h >>> 14);

h += (h << 4);

h ^= (h >>> 10);

return h;

}

/**

* Returns the segment that should be used for key with given hash 这个是寻找所在分段

*

* @param hash

* the hash code for the key

* @return the segment

*/

final Segment<K, V> segmentFor(int hash) {

// hash>>>16&3

return segments[(hash >>> segmentShift) & segmentMask];

}

//Segment 类方法

/* Specialized implementations of map methods */

// 获得值了,和其他map的get的实现其实差不多

V get(Object key, int hash) {

// count 是每个分段的键值对个数,而且是volatile,保证在内存中只有一份

if (count != 0) { // read-volatile

// 获得分段中hash链表的第一个值

HashEntry<K, V> e = getFirst(hash);

while (e != null) {

if (e.hash == hash && key.equals(e.key)) {

V v = e.value;

if (v != null)

return v;

// 这个做了一个挺有趣的检查,如果v==null,而key!=null,的时候会等待锁中value的值

return readValueUnderLock(e); // recheck

}

e = e.next;

}

}

return null;

}

/**

* Reads value field of an entry under lock. Called if value field ever

* appears to be null. This is possible only if a compiler happens to

* reorder a HashEntry initialization with its table assignment, which

* is legal under memory model but is not known to ever occur.

*/

V readValueUnderLock(HashEntry<K, V> e) {

lock();

try {

return e.value;

} finally {

unlock();

}

}

put 方法

Java代码


//ConcurrentHashMap类

// 注意的是key 和value 都不能为空

public V put(K key, V value) {

if (value == null)

throw new NullPointerException();

// 和get方式一样的hash 方式

int hash = hash(key);

return segmentFor(hash).put(key, hash, value, false);

}

//Segment 类

V put(K key, int hash, V value, boolean onlyIfAbsent) {

// 这里加锁了

lock();

try {

int c = count;

// 如果超过限制,就重新分配

if (c++ > threshold) // ensure capacity

rehash();

HashEntry<K, V>[] tab = table;

int index = hash & (tab.length - 1);

HashEntry<K, V> first = tab[index];

HashEntry<K, V> e = first;

// e的值总是在链表的最后一个

while (e != null && (e.hash != hash || !key.equals(e.key)))

e = e.next;

V oldValue;

if (e != null) {

oldValue = e.value;

// 这里就是实现putIfAbsent 的方式

if (!onlyIfAbsent)

e.value = value;

} else {

oldValue = null;

++modCount;

tab[index] = new HashEntry<K, V>(key, hash, first, value);

count = c; // write-volatile

}

return oldValue;

} finally {

unlock();

}

}

// 这中扩容方式应该和其他map 的扩容一样

void rehash() {

HashEntry<K, V>[] oldTable = table;

int oldCapacity = oldTable.length;

// 如果到了最大容量则不能再扩容了,max=1<<30,这将可能导致的一个后果是map的操作越来越慢

if (oldCapacity >= MAXIMUM_CAPACITY)

return;

/*

* Reclassify nodes in each list to new Map. Because we are using

* power-of-two expansion, the elements from each bin must either

* stay at same index, or move with a power of two offset. We

* eliminate unnecessary node creation by catching cases where old

* nodes can be reused because their next fields won't change.

* Statistically, at the default threshold, only about one-sixth of

* them need cloning when a table doubles. The nodes they replace

* will be garbage collectable as soon as they are no longer

* referenced by any reader thread that may be in the midst of

* traversing table right now.

*/

// 以两倍的方式增长

HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);

threshold = (int) (newTable.length * loadFactor);

int sizeMask = newTable.length - 1;

// 下面的数据拷贝就没多少好讲的了

for (int i = 0; i < oldCapacity; i++) {

// We need to guarantee that any existing reads of old Map can

// proceed. So we cannot yet null out each bin.

HashEntry<K, V> e = oldTable[i];

if (e != null) {

HashEntry<K, V> next = e.next;

int idx = e.hash & sizeMask;

// Single node on list

if (next == null)

newTable[idx] = e;

else {

// Reuse trailing consecutive sequence at same slot

HashEntry<K, V> lastRun = e;

int lastIdx = idx;

for (HashEntry<K, V> last = next; last != null; last = last.next) {

int k = last.hash & sizeMask;

if (k != lastIdx) {

lastIdx = k;

lastRun = last;

}

}

newTable[lastIdx] = lastRun;

// Clone all remaining nodes

for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {

int k = p.hash & sizeMask;

HashEntry<K, V> n = newTable[k];

newTable[k] = new HashEntry<K, V>(p.key, p.hash, n,

p.value);

}

}

}

}

table = newTable;

}

size 方法

Java代码


/**

* Returns the number of key-value mappings in this map. If the map contains

* more than <tt>Integer.MAX_VALUE</tt> elements, returns

* <tt>Integer.MAX_VALUE</tt>. javadoc 上也写明了,返回的数值不能超过Int的最大值,超过也返回最大值

* 在下面的分析也可以看出,为了减少锁竞争做了一些性能优化,这种的优化方式在很多方法都有使用

*

* @return the number of key-value mappings in this map

*/

public int size() {

final Segment<K, V>[] segments = this.segments;

long sum = 0;

long check = 0;

int[] mc = new int[segments.length];

// Try a few times to get accurate count. On failure due to

// continuous async changes in table, resort to locking.

// 这里最多试RETRIES_BEFORE_LOCK=2 次的检查对比

for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {

check = 0;

sum = 0;// size 总数

int mcsum = 0;// 修改的总次数

// 这里保存了一份对比值,供下次对比时使用

for (int i = 0; i < segments.length; ++i) {

sum += segments[i].count;

mcsum += mc[i] = segments[i].modCount;

}

// 只有当map初始化的时候才等于0

if (mcsum != 0) {

// 在此对比上面保存的修改值

for (int i = 0; i < segments.length; ++i) {

check += segments[i].count;

if (mc[i] != segments[i].modCount) {

check = -1; // force retry

break;

}

}

}

// 检查和第一次保存值一样则结束循环

if (check == sum)

break;

}

// 当不相等的时候,这里就只有用锁来保证正确性了

if (check != sum) { // Resort to locking all segments

sum = 0;

for (int i = 0; i < segments.length; ++i)

segments[i].lock();

for (int i = 0; i < segments.length; ++i)

sum += segments[i].count;

for (int i = 0; i < segments.length; ++i)

segments[i].unlock();

}

// 这里也可以看出,如果超过int 的最大值值返回int 最大值

if (sum > Integer.MAX_VALUE)

return Integer.MAX_VALUE;

else

return (int) sum;

}

keys 方法

Java代码


public Enumeration<K> keys() {

//这里新建了一个内部Iteraotr 类

return new KeyIterator();

}

//这里主要是继承了HashIterator 方法,基本的实现都在HashIterator 中

final class KeyIterator extends HashIterator implements Iterator<K>,

Enumeration<K> {

public K next() {

return super.nextEntry().key;

}

public K nextElement() {

return super.nextEntry().key;

}

}

/* ---------------- Iterator Support -------------- */

// 分析代码发现,这个遍历过程没有涉及到锁,查看Javadoc 后可知该视图的 iterator 是一个“弱一致”的迭代器。。

abstract class HashIterator {

int nextSegmentIndex;// 下一个分段的index

int nextTableIndex;// 下一个分段的容器的index

HashEntry<K, V>[] currentTable;// 当前容器

HashEntry<K, V> nextEntry;// 下个键值对

HashEntry<K, V> lastReturned;// 上次返回的键值对

HashIterator() {

nextSegmentIndex = segments.length - 1;

nextTableIndex = -1;

advance();

}

public boolean hasMoreElements() {

return hasNext();

}

// 先变量键值对的链表,再对table 数组的index 遍历,最后遍历分段数组的index。。这样就可以完整的变量完所有的entry了

final void advance() {

// 先变量键值对的链表

if (nextEntry != null && (nextEntry = nextEntry.next) != null)

return;

// 对table 数组的index 遍历

while (nextTableIndex >= 0) {

if ((nextEntry = currentTable[nextTableIndex--]) != null)

return;

}

// 遍历分段数组的index

while (nextSegmentIndex >= 0) {

Segment<K, V> seg = segments[nextSegmentIndex--];

if (seg.count != 0) {

currentTable = seg.table;

for (int j = currentTable.length - 1; j >= 0; --j) {

if ((nextEntry = currentTable[j]) != null) {

nextTableIndex = j - 1;

return;

}

}

}

}

}

public boolean hasNext() {

return nextEntry != null;

}

HashEntry<K, V> nextEntry() {

if (nextEntry == null)

throw new NoSuchElementException();

// 把上次的entry换成当前的entry

lastReturned = nextEntry;

// 这里做一些预操作

advance();

return lastReturned;

}

public void remove() {

if (lastReturned == null)

throw new IllegalStateException();

ConcurrentHashMap.this.remove(lastReturned.key);

lastReturned = null;

}

}

keySet/Values/elements 这几个方法都和keys 方法非常相似 。。就不解释了。。而entrySet 方法有点特别。。我也有点不是很明白。。

Java代码


//这里没什么好说的,看下就明白,主要在下面

public Set<Map.Entry<K, V>> entrySet() {

Set<Map.Entry<K, V>> es = entrySet;

return (es != null) ? es : (entrySet = new EntrySet());

}

final class EntrySet extends AbstractSet<Map.Entry<K, V>> {

public Iterator<Map.Entry<K, V>> iterator() {

return new EntryIterator();

}

}

//主要在这里,新建了一个WriteThroughEntry 这个类

final class EntryIterator extends HashIterator implements

Iterator<Entry<K, V>> {

public Map.Entry<K, V> next() {

HashEntry<K, V> e = super.nextEntry();

return new WriteThroughEntry(e.key, e.value);

}

}

/**

* Custom Entry class used by EntryIterator.next(), that relays setValue

* changes to the underlying map.

* 这个主要是返回一个Entry,但有点不明白的是为什么不在HashEntry中实现Map

* .Entry就可以了(HashMap就是这样的),为了减少锁竞争??

*/

final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> {

WriteThroughEntry(K k, V v) {

super(k, v);

}

/**

* Set our entry's value and write through to the map. The value to

* return is somewhat arbitrary here. Since a WriteThroughEntry does not

* necessarily track asynchronous changes, the most recent "previous"

* value could be different from what we return (or could even have been

* removed in which case the put will re-establish). We do not and

* cannot guarantee more.

*/

public V setValue(V value) {

if (value == null)

throw new NullPointerException();

V v = super.setValue(value);

ConcurrentHashMap.this.put(getKey(), value);

return v;

}

}

从上面可以看出,ConcurrentHash 也没什么特别的,大概的思路就是采用分段锁机制来实现的,把之前用一个容易EntryTable来装的转换成多个Table来装键值对。而方法里面的也采用了不少为了减少锁竞争而做的一些优化。。从ConcurrentHash类里面可以看出,它里面实现了一大堆的内部类。。比如Segment/KeyIterator/ValueIterator/EntryIterator等等。。个人觉得有些代码好像比较难理解。。比如Segment 类继承ReentrantLock,为什么不用组合呢。。还会有上面提到的,HashEntry
为什么不像HashMap 的Entry一样实现Map.Entry接口。。建立这么多内部类,搞得人头晕晕的。。。。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: