您的位置:首页 > 理论基础 > 数据结构算法

数据结构 《2》----基于邻接表表示的图的实现 DFS(递归和非递归), BFS

2014-01-13 15:32 671 查看
图通常有两种表示方法: 邻接矩阵 和 邻接表

对于稀疏的图,邻接表表示能够极大地节省空间。

以下是图的数据结构的主要部分:

struct Vertex{

ElementType element; //节点的名字

Edge *next; //所包含的边组成的单链表的头指针

};

struct Edge{

int adj; //节点的标号(0-number of nodes)

Edge *next;

};

注意,实际应用中,节点都有名字,而不是数字,所以我们需要提供从名字到标号的映射。

最简单的方法就是 Hash(散列表),或者二叉查找树之类的能够快速提供查询的数据结构。

本文的处理较为简单: 节点的名字是 'a' ---- 'z', 所以映射通过简单的运算即可实现: node id = node name - 'a'.



// copyright @ L.J.SHOU Jan.13, 2014

#include "graph.h"
#include <ctime>
#include <iostream>
#include <stack>
#include <queue>
using namespace std;

typedef char ElementType;
typedef Vertex* Graph;

enum Color{WHITE, GRAY, BLACK};

struct Edge
{
int vertex;
int weight;
Edge *next;
};

struct Vertex
{
Color color;
ElementType element;
int start, finish;
Edge *next;//head of adjacent list
};

Graph Create(Graph graph, int n)
{
graph = new Vertex
;
for(int i=0; i<n; ++i)
{
graph[i].color = WHITE;
graph[i].element = i + 'a';
graph[i].start = 0;
graph[i].finish = 0;
graph[i].next = NULL;
}
return graph;
}

// Reset Graph
void Clear(Graph graph, int n)
{
for(int i=0; i<n; ++i)
{
graph[i].color = WHITE;
graph[i].start = 0;
graph[i].finish = 0;
}
}

Graph DeleteGraph(Graph graph, int n)
{
for(int i=0; i<n; ++i)
{
Edge* head(graph[i].next), *next(NULL);
while(head)
{
next = head->next;
delete head;
head = next;
}
}
delete [] graph;
return NULL;
}

// return the outdegree of vertex i
int OutDegree(Graph g, int i)
{
int num(0);

Edge* link(g[i].next);
while(link)
{
link = link->next;
++ num;
}
return num;
}

// test whether edge(i, j) exists
bool Exist(Graph g, int i, int j)
{
Edge *link(g[i].next);

while(link && link->vertex != j)
link = link->next;

if(link == NULL)
return false;
else
return true;
}

bool InsertEdge(Graph g, int i, int j)
{
if(Exist(g, i, j)){
cout << "edge (" << i << "," << j << ") already existed" << endl;
return false;
}

Edge *edge(NULL);
edge = new struct Edge;
edge->vertex = j;
edge->next = g[i].next;
g[i].next = edge;

return true;
}

bool DeleteEdge(Graph g, int i, int j)
{
if(!Exist(g, i, j)){
cout << "edge (" << i << "," << j << ") doesn't exist" << endl;
return false;
}

Edge *cur(g[i].next), *pre(cur);

while(cur && cur->vertex != j)
{
pre = cur;
cur = cur->next;
}

if(pre == NULL)
{ // delete head edge
g[i].next = cur->next;
delete cur;
}
else
{
pre->next = cur->next;
delete cur;
}
return true;
}

// print adjacent list
void OutPut(Graph g, int n)
{
Edge *edge(NULL);
for(int i=0; i<n; ++i)
{
cout << g[i].element << "->";
edge = g[i].next;
while(edge)
{
cout << g[edge->vertex].element << "->";
edge = edge->next;
}
cout << "NULL" << endl;
}
}

void DFS(Graph graph, int n)
{
cout << "DFS: " << endl;;
Clear(graph, n);
for(int i=0; i<n; ++i)
{
if(graph[i].color == WHITE)
DFSVisit(graph, i);
}
cout << endl;

cout << "DFS_stack: " << endl;
Clear(graph, n);
for(int i=0; i<n; ++i)
{
if(graph[i].color == WHITE)
DFSVisitStack(graph, i);
}
cout << endl;
}

// recursive DFS
void DFSVisit(Graph graph, int i)
{
static int time(0);
Edge *link(graph[i].next);

cout << graph[i].element << " ";
graph[i].color = GRAY;
graph[i].start = ++time;

while(link)
{
if(graph[link->vertex].color == WHITE)
DFSVisit(graph, link->vertex);
link = link->next;
}

graph[i].finish = ++time;
graph[i].color = BLACK;
}

// non-recursive DFS
void DFSVisitStack(Graph g, int i)
{
static int time(0);
struct Edge* edge;
int vertex;
stack<int> s;

//visit vertex i
cout << g[i].element << " ";
g[i].color = GRAY;
g[i].start = ++time;
s.push(i);

while(!s.empty())
{
vertex = s.top();
edge = g[vertex].next;
while(edge)
{
if(g[edge->vertex].color == WHITE)
{
s.push(edge->vertex);
cout << g[edge->vertex].element << " ";
g[edge->vertex].start = ++time;
g[edge->vertex].color = GRAY;
break;
}
edge = edge->next;
}
//vertex's neigbours have been visited
if(edge == NULL){
s.pop();
g[vertex].color = BLACK;
g[vertex].finish = ++time;
}
}
}

/////////////////////////////////////////////////////////////
// search all vertices that can be rearched from Source s ///
// compute the distances from source s ///    ///////////////
/////////////////////////////////////////////////////////////
void BFS(Graph g, int n, int s)
{
queue<int> q;
Edge *edge(NULL);
int vertex;

//visit source vertex
Clear(g, n);
cout << "BFS: " << endl;;
cout << g[s].element << " ";
g[s].color = GRAY;
q.push(s);

while(!q.empty())
{
//dequeue
vertex = q.front();
q.pop();

//all the adjacent vertices
edge = g[vertex].next;
while(edge)
{
if(g[edge->vertex].color == WHITE){
g[edge->vertex].color = GRAY;
cout << g[edge->vertex].element << " ";
//enqueue
q.push(edge->vertex);
}
edge = edge->next;
}
g[vertex].color = BLACK;
}//end of while

cout << endl;
}

int main()
{
Graph graph;
int num_vertices = 8;

graph = Create(graph, num_vertices);

InsertEdge(graph,0,1);
InsertEdge(graph,1,2);
InsertEdge(graph,2,3);
InsertEdge(graph,3,2);
InsertEdge(graph,4,0);
InsertEdge(graph,1,5);
InsertEdge(graph,2,6);
InsertEdge(graph,3,7);
InsertEdge(graph,1,4);
InsertEdge(graph,4,5);
InsertEdge(graph,5,6);
InsertEdge(graph,6,7);
InsertEdge(graph,7,7);
InsertEdge(graph,6,5);

OutPut(graph, num_vertices);
DFS(graph, num_vertices);
BFS(graph, num_vertices, 0);

graph = DeleteGraph(graph, num_vertices);

return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: