您的位置:首页 > 编程语言 > Qt开发

Qt学习笔记(十)多线程

2013-10-16 18:28 295 查看
在一个单处理器上运行时,多线程应用程序可能会比实现同样功能的单线程应用程序运行的更慢一些,无法体现出其优势。但在多处理器上运行时,多线程应用程序可以在不同的处理器上同时执行多个线程,从而获得更好的整体性能。

QT通过三种形式提供了对线程的支持。它们分别是,一、平台无关的线程类,二、线程安全的事件投递,三、跨线程的信号-槽连接。这使得开发轻巧的多线程Qt程序更为容易,并能充分利用多处理器机器的优势。多线程编程也是一个有用的模式,它用于解决执行较长时间的操作而不至于用户界面失去响应。在Qt的早期版本中,在构建库时有不选择线程支持的选项,从4.0开始,线程总是有效的。

线程类

Qt 包含下面一些线程相关的类:

QThread 提供了开始一个新线程的方法

QThreadStorage 提供逐线程数据存储

QMutex 提供相互排斥的锁,或互斥量

QMutexLocker 是一个便利类,它可以自动对QMutex加锁与解锁

QReadWriterLock 提供了一个可以同时读操作的锁

QReadLocker与QWriteLocker 是便利类,它自动对QReadWriteLock加锁与解锁

QSemaphore 提供了一个整型信号量,是互斥量的泛化

QWaitCondition 提供了一种方法,使得线程可以在被另外线程唤醒之前一直休眠。

创建一个线程

为创建一个线程,子类化QThread并且重写它的run()函数,例如:




class MyThread : public QThread
{
     Q_OBJECT
protected:
     void run();
};
void MyThread::run()
{
     ...
}





之后,创建这个线程对象的实例,调用QThread::start()。于是,在run()里出现的代码将会在另外线程中被执行。

注意:QCoreApplication::exec()必须总是在主线程(执行main()的那个线程)中被调用,不能从一个QThread中调用。在GUI程序中,主线程也被称为GUI线程,因为它是唯一一个允许执行GUI相关操作的线程。另外,你必须在创建一个QThread之前创建QApplication(or QCoreApplication)对象。



线程同步

QMutex, QReadWriteLock, QSemaphore, QWaitCondition 提供了线程同步的手段。使用线程的主要想法是希望它们可以尽可能并发执行,而一些关键点上线程之间需要停止或等待。例如,假如两个线程试图同时访问同一个全局变量,结果可能不如所愿。

QMutex 提供相互排斥的锁,或互斥量。在一个时刻至多一个线程拥有mutex,假如一个线程试图访问已经被锁定的mutex,那么它将休眠,直到拥有mutex的线程对此mutex解锁。Mutexes常用来保护共享数据访问。

QReadWriterLock 与QMutex相似,除了它对 "read","write"访问进行区别对待。它使得多个读者可以共时访问数据。使用QReadWriteLock而不是QMutex,可以使得多线程程序更具有并发性。




QReadWriteLock lock;
void ReaderThread::run()
{
    // ...
     lock.lockForRead();
     read_file();
     lock.unlock();
     //...
}
void WriterThread::run()
{
   // ...
     lock.lockForWrite();
     write_file();
     lock.unlock();
    // ...
}





QSemaphore 是QMutex的一般化,它可以保护一定数量的相同资源,与此相对,一个mutex只保护一个资源。下面例子中,使用QSemaphore来控制对环状缓冲的访问,此缓冲区被生产者线程和消费者线程共享。生产者不断向缓冲写入数据直到缓冲末端,再从头开始。消费者从缓冲不断读取数据。信号量比互斥量有更好的并发性,假如我们用互斥量来控制对缓冲的访问,那么生产者,消费者不能同时访问缓冲。然而,我们知道在同一时刻,不同线程访问缓冲的不同部分并没有什么危害。




const int DataSize = 100000;
const int BufferSize = 8192;
char buffer[BufferSize];
QSemaphore freeBytes(BufferSize);
QSemaphore usedBytes;
class Producer : public QThread
{
public:
     void run();
};
void Producer::run()
{
     qsrand(QTime(0,0,0).secsTo(QTime::currentTime()));
     for (int i = 0; i < DataSize; ++i) {
         freeBytes.acquire();
         buffer[i % BufferSize] = "ACGT"[(int)qrand() % 4];
         usedBytes.release();
     }
}
class Consumer : public QThread
{
public:
     void run();
};
void Consumer::run()
{
     for (int i = 0; i < DataSize; ++i) {
         usedBytes.acquire();
         fprintf(stderr, "%c", buffer[i % BufferSize]);
         freeBytes.release();
     }
     fprintf(stderr, "\n");
}
int main(int argc, char *argv[])
{
     QCoreApplication app(argc, argv);
     Producer producer;
     Consumer consumer;
     producer.start();
     consumer.start();
     producer.wait();
     consumer.wait();
     return 0;
}





QWaitCondition 允许线程在某些情况发生时唤醒另外的线程。一个或多个线程可以阻塞等待一QWaitCondition ,用wakeOne()或wakeAll()设置一个条件。wakeOne()随机唤醒一个,wakeAll()唤醒所有。

下面的例子中,生产者首先必须检查缓冲是否已满(numUsedBytes==BufferSize),如果是,线程停下来等待bufferNotFull条件。如果不是,在缓冲中生产数据,增加numUsedBytes,激活条件 bufferNotEmpty。使用mutex来保护对numUsedBytes的访问。另外,QWaitCondition::wait()接收一个mutex作为参数,这个mutex应该被调用线程初始化为锁定状态。在线程进入休眠状态之前,mutex会被解锁。而当线程被唤醒时,mutex会处于锁定状态,而且,从锁定状态到等待状态的转换是原子操作,这阻止了竞争条件的产生。当程序开始运行时,只有生产者可以工作。消费者被阻塞等待bufferNotEmpty条件,一旦生产者在缓冲中放入一个字节,bufferNotEmpty条件被激发,消费者线程于是被唤醒。




const int DataSize = 100000;
const int BufferSize = 8192;
char buffer[BufferSize];
QWaitCondition bufferNotEmpty;
QWaitCondition bufferNotFull;
QMutex mutex;
int numUsedBytes = 0;
class Producer : public QThread
{
public:
     void run();
};
void Producer::run()
{
     qsrand(QTime(0,0,0).secsTo(QTime::currentTime()));
     for (int i = 0; i < DataSize; ++i) {
         mutex.lock();
         if (numUsedBytes == BufferSize)
             bufferNotFull.wait(&mutex);
         mutex.unlock();
         buffer[i % BufferSize] = "ACGT"[(int)qrand() % 4];
         mutex.lock();
         ++numUsedBytes;
         bufferNotEmpty.wakeAll();
         mutex.unlock();
     }
}
class Consumer : public QThread
{
public:
     void run();
};
void Consumer::run()
{
     for (int i = 0; i < DataSize; ++i) {
         mutex.lock();
         if (numUsedBytes == 0)
             bufferNotEmpty.wait(&mutex);
         mutex.unlock();
         fprintf(stderr, "%c", buffer[i % BufferSize]);
         mutex.lock();
         --numUsedBytes;
         bufferNotFull.wakeAll();
         mutex.unlock();
     }
     fprintf(stderr, "\n");
}

bool QWaitCondition::wait ( unsigned long time = ULONG_MAX )

在线程事件对象上等待。调用这个的线程将会阻塞,直到下列条件之一满足时才醒来:另一个线程使用wakeOne()或wakeAll()传输信号给它。在这种情况下,这个函数将返回真。 time毫秒过去了。如果time为ULONG_MAX(默认值),那么这个等待将永远不会超时(这个事件必须被传输)。如果等待的事件超时,这个函数将会返回假。 也可以参考wakeOne()和wakeAll()。

bool QWaitCondition::wait ( QMutex * mutex, unsigned long time = ULONG_MAX )

这是一个重载成员函数,提供了方便。它的行为基本上和上面的函数相同。释放锁定的mutex并且在线程事件对象上等待。mutex必须由调用线程初始锁定的。如果mutex没有在锁定状态,这个函数立即返回。如果mutex是一个递归互斥量,这个函数立即返回。mutex将被解锁,并且调用线程将会阻塞,直到下列条件之一满足时才醒来:另一个线程使用wakeOne()或wakeAll()传输信号给它。在这种情况下,这个函数将返回真。 time毫秒过去了。如果time为ULONG_MAX(默认值),那么这个等待将永远不会超时(这个事件必须被传输)。如果等待的事件超时,这个函数将会返回假。 互斥量将以同样的锁定状态返回。这个函数提供的是允许从锁定状态到等待状态的原子转换。 int main(int argc, char *argv[]) { QCoreApplication app(argc, argv); Producer producer; Consumer consumer; producer.start(); consumer.start(); producer.wait(); consumer.wait(); return 0; }







与主线程通信

当QT应用程序开始执行时,只有主线程是运行的。主线程是唯一允许创建QApplication或者QCoreApplication对象,并且可以对创建的对象调用exec()的线程。在调用exec()之后,这个线程或者等待一个事件或者处理一个事件。

通过创建一些QThread子类的对象,主线程可以开始一些新的线程。如果这些线程需要在他们之间进行通信,则可以使用含有互斥量、读写锁、信号或者等待条件的共享变量。但在这些技术中,没有任何一个可以用来和主线程进行通信,因为他们会锁住事件循环并且会冻结用户界面。

在子线程和主线程之间进行通信的一个解决方案是在线程之间使用信号---槽的连接。通常情况下,信号和槽机制可以同步操作,这意味着在发射信号的时候,使用直接函数即可立刻调用连接到一个信号上的多个槽。然而,当连接位于不同线程中的对象时,这一机制就会变得不同步起来【这种状态可以通过修改QObject::connect()中的第五个可选参数而改变】。这个槽接着就会由线程的事件循环调用,而在该线程中存在着***对象。在默认情况下,QObject存在于创建它的线程中,通过调用QObject::moveToThread()可以在任意时刻修改它。

在子线程中使用QT类

当函数可以同时被不同的线程安全的调用时,被称为”线程安全“的。如果在不同的线程中对某一共享数据局同时调用两个线程安全的函数,那么结果就总是确定的。当一个类的所有函数都可以同时被不同的线程调用,并且他们之间互不干涉,即使想在操作同一个对象的时候也互不妨碍,则称这个类是”线程安全“的。

在Qt中,线程安全的类有 QMutex, QMutexLocker, QReadWriteLock, QReadLock, QWriteLock, QSemaphore, QThreadStorage<T>以及QWaitCondition。此外,部分QThread应用编程接口和其他某些函数也是线程安全的,特别是QObject::connect(), QObject::disconnect(), QCoreApplication::postEvent(),
QCoreApplication::removePostedEvent()。

可重入与线程安全

在Qt文档中,术语“可重入”与“线程安全”被用来说明一个函数如何用于多线程程序。假如一个类的任何函数在此类的多个不同的实例上,可以被多个线程同时调用,那么这个类被称为是“可重入”的。假如不同的线程作用在同一个实例上仍可以正常工作,那么称之为“线程安全”的。

c++中类的不同对象的成员变量是独立的,成员函数是共享的。在使用成员函数对成员变量进行操作时,系统能够知道操作的具体是哪个对象,是因为成员函数含有隐含的参数this指针。

可重入:

可重入函数也可以这样理解,重入即表示重复进入,首先它意味着这个函数可以被中断,其次意味着它除了使用自己栈上的变量以外不依赖于任何环境(包括static),这样的函数就是purecode(纯代码)可重入,可以允许有该函数的多个副本在运行,由于它们使用的是分离的栈,所以不会互相干扰。如果确实需要访问全局变量(包括static),一定要注意实施互斥手段。可重入函数在并行运行环境中非常重要,但是一般要为访问全局变量付出一些性能代价。

编写可重入函数时,若使用全局变量,则应通过关中断、信号量(即P、V操作)等手段对其加以保护。

若对所使用的全局变量不加以保护,则此函数就不具有可重入性,即当多个进程调用此函数时,很有可能使有关全局变量变为不可知状态。

实时系统的设计中,经常会出现多个任务调用同一个函数的情况。如果这个函数不幸被设计成为不可重入的函数的话,那么不同任务调用这个函数时可能修改其他任务调用这个函数的数据,从而导致不可预料的后果。那么什么是可重入函数呢?所谓可重入函数是指一个可以被多个任务调用的过程,任务在调用时不必担心数据是否会出错。不可重入函数在实时系统设计中被视为不安全函数。

线程安全:

如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

或者说:一个类或者程序所提供的接口对于线程来说是原子操作或者多个线程之间的切换不会导致该接口的执行结果存在二义性,也就是说我们不用考虑同步的问题。

线程安全问题都是由全局变量静态变量引起的。





若每个线程中对全局变量静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。

大多数c++类天生就是可重入的,因为它们典型地仅仅引用成员数据(不包含全局成员数据)。任何线程可以在类的一个实例上调用这样的成员函数,只要没有别的线程在同一个实例上调用这个成员函数。举例来讲,下面的Counter
类是可重入的:




class Counter
{
public:
      Counter() {n=0;}
      void increment() {++n;}
      void decrement() {--n;}
      int value() const {return n;}
private:
      int n;
};





这个类不是线程安全的,因为假如多个线程都试图修改数据成员 n,结果未定义。这是因为c++中的++和--操作符不是原子操作。实际上,它们会被扩展为三个机器指令:

1,把变量值装入寄存器

2,增加或减少寄存器中的值

3,把寄存器中的值写回内存

假如线程A与B同时装载变量的旧值,在寄存器中增值,回写。他们写操作重叠了,导致变量值仅增加了一次。很明显,访问应该串行化:A执行123步骤时不应被打断。使这个类成为线程安全的最简单方法是使用QMutex来保护数据成员:




class Counter
{
public:
     Counter() { n = 0; }
     void increment() { QMutexLocker locker(&mutex); ++n; }
     void decrement() { QMutexLocker locker(&mutex); --n; }
     int value() const { QMutexLocker locker(&mutex); return n; }
private:
     mutable QMutex mutex;
     int n;
};





QMutexLocker类在构造函数中自动对mutex进行加锁,在析构函数中进行解锁。随便一提的是,mutex使用了mutable关键字来修饰,因为我们在value()函数中对mutex进行加锁与解锁操作,而value()是一个const函数。

大多数Qt类是可重入,非线程安全的。有一些类与函数是线程安全的,它们主要是线程相关的类,如QMutex,QCoreApplication::postEvent()。



线程与QObjects

QThread 继承自QObject,它发射信号以指示线程执行开始与结束,而且也提供了许多slots。更有趣的是,QObjects可以用于多线程,这是因为每个线程被允许有它自己的事件循环。

QObject 可重入性

QObject是可重入的。它的大多数非GUI子类,像QTimer,QTcpSocket,QUdpSocket,QHttp,QFtp,QProcess也是可重入的,在多个线程中同时使用这些类是可能的。需要注意的是,这些类被设计成在一个单线程中创建与使用,因此,在一个线程中创建一个对象,而在另外的线程中调用它的函数,这样的行为不能保证工作良好。有三种约束需要注意:

1,QObject的孩子总是应该在它父亲被创建的那个线程中创建。这意味着,你绝不应该传递QThread对象作为另一个对象的父亲(因为QThread对象本身会在另一个线程中被创建)

2,事件驱动对象仅仅在单线程中使用。明确地说,这个规则适用于"定时器机制“与”网格模块“,举例来讲,你不应该在一个线程中开始一个定时器或是连接一个套接字,当这个线程不是这些对象所在的线程。

3,你必须保证在线程中创建的所有对象在你删除QThread前被删除。这很容易做到:你可以run()函数运行的栈上创建对象。

尽管QObject是可重入的,但GUI类,特别是QWidget与它的所有子类都是不可重入的。它们仅用于主线程。正如前面提到过的,QCoreApplication::exec()也必须从那个线程中被调用。实践上,不会在别的线程中使用GUI类,它们工作在主线程上,把一些耗时的操作放入独立的工作线程中,当工作线程运行完成,把结果在主线程所拥有的屏幕上显示。

逐线程事件循环

每个线程可以有它的事件循环,初始线程开始它的事件循环需使用QCoreApplication::exec(),别的线程开始它的事件循环需要用QThread::exec().像QCoreApplication一样,QThreadr提供了exit(int)函数,一个quit()
slot。

线程中的事件循环,使得线程可以使用那些需要事件循环的非GUI 类(如,QTimer,QTcpSocket,QProcess)。也可以把任何线程的signals连接到特定线程的slots,也就是说信号-槽机制是可以跨线程使用的。对于在QApplication之前创建的对象,QObject::thread()返回0,这意味着主线程仅为这些对象处理投递事件,不会为没有所属线程的对象处理另外的事件。可以用QObject::moveToThread()来改变它和它孩子们的线程亲缘关系,假如对象有父亲,它不能移动这种关系。在另一个线程(而不是创建它的那个线程)中delete QObject对象是不安全的。除非你可以保证在同一时刻对象不在处理事件。可以用QObject::deleteLater(),它会投递一个DeferredDelete事件,这会被对象线程的事件循环最终选取到。

假如没有事件循环运行,事件不会分发给对象。举例来说,假如你在一个线程中创建了一个QTimer对象,但从没有调用过exec(),那么QTimer就不会发射它的timeout()信号.对deleteLater()也不会工作。(这同样适用于主线程)。你可以手工使用线程安全的函数QCoreApplication::postEvent(),在任何时候,给任何线程中的任何对象投递一个事件,事件会在那个创建了对象的线程中通过事件循环派发。事件过滤器在所有线程中也被支持,不过它限定被监视对象与监视对象生存在同一线程中。类似地,QCoreApplication::sendEvent(不是postEvent()),仅用于在调用此函数的线程中向目标对象投递事件。

从别的线程中访问QObject子类

QObject和所有它的子类是非线程安全的。这包括整个的事件投递系统。需要牢记的是,当你正从别的线程中访问对象时,事件循环可以向你的QObject子类投递事件。假如你调用一个不生存在当前线程中的QObject子类的函数时,你必须用mutex来保护QObject子类的内部数据,否则会遭遇灾难或非预期结果。像其它的对象一样,QThread对象生存在创建它的那个线程中---不是当QThread::run()被调用时创建的那个线程。一般来讲,在你的QThread子类中提供slots是不安全的,除非你用mutex保护了你的成员变量。

另一方面,你可以安全的从QThread::run()的实现中发射信号,因为信号发射是线程安全的。

跨线程的信号-槽

Qt支持三种类型的信号-槽连接:

1,直接连接,当signal发射时,slot立即调用。此slot在发射signal的那个线程中被执行(不一定是接收对象生存的那个线程)

2,队列连接,当控制权回到对象属于的那个线程的事件循环时,slot被调用。此slot在接收对象生存的那个线程中被执行

3,自动连接(缺省),假如信号发射与接收者在同一个线程中,其行为如直接连接,否则,其行为如队列连接。

连接类型可能通过以向connect()传递参数来指定。注意的是,当发送者与接收者生存在不同的线程中,而事件循环正运行于接收者的线程中,使用直接连接是不安全的。同样的道理,调用生存在不同的线程中的对象的函数也是不是安全的。QObject::connect()本身是线程安全的。

多线程与隐含共享

Qt为它的许多值类型使用了所谓的隐含共享(implicit sharing)来优化性能。原理比较简单,共享类包含一个指向共享数据块的指针,这个数据块中包含了真正原数据与一个引用计数。把深拷贝转化为一个浅拷贝,从而提高了性能。这种机制在幕后发生作用,程序员不需要关心它。如果深入点看,假如对象需要对数据进行修改,而引用计数大于1,那么它应该先detach()。以使得它修改不会对别的共享者产生影响,既然修改后的数据与原来的那份数据不同了,因此不可能再共享了,于是它先执行深拷贝,把数据取回来,再在这份数据上进行修改。例如:




void QPen::setStyle(Qt::PenStyle style)
{
     detach();           // detach from common data
     d->style = style;   // set the style member
}
void QPen::detach()
{
     if (d->ref != 1) {
         ...             // perform a deep copy
     }
}





一般认为,隐含共享与多线程不太和谐,因为有引用计数的存在。对引用计数进行保护的方法之一是使用mutex,但它很慢,Qt早期版本没有提供一个满意的解决方案。从4.0开始,隐含共享类可以安全地跨线程拷贝,如同别的值类型一样。它们是完全可重入的。隐含共享真的是"implicit"。它使用汇编语言实现了原子性引用计数操作,这比用mutex快多了。

假如你在多个线程中同进访问相同对象,你也需要用mutex来串行化访问顺序,就如同其他可重入对象那样。总的来讲,隐含共享真的给”隐含“掉了,在多线程程序中,你可以把它们看成是一般的,非共享的,可重入的类型,这种做法是安全的。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: