您的位置:首页 > 编程语言 > C语言/C++

C语言的面向对象设计 —— 对 X264/FFMPEG 架构探讨

2013-10-14 23:49 441 查看
类似题目的文章已经不新鲜了,这里,我仅仅总结自己的一些代码经验,结合两款在视频开发领域比较常用的开源软件探讨C语言的应用问题。

1.为什么要用C语言

曾几何时,我也不熟悉C,最早接触C的是在大学四年级,当时已经学过pascal,过二级也是pascal。接着走上了Delphi的路,多方便的软件,写写画画,程序就出来了,本科的毕业设计就是这样出来的MIS,在当时还很时髦的花哨了一阵,弄了个优秀论文。当有一天,看到别人的代码,一行行的,整齐的缩进,而略为难理解的*号,一下被这种语言难住了。于是拿着国内最流行的谭浩强的C书一阵狂读,云里雾里的。等到了国外,依然要跟那些金发碧眼的朋友一起读C语言,但是是为了解决数值运算问题,一面拼命理解难懂的外文,一面偷偷在下面看谭C,所作的作业也是求4阶矩阵乘法等等,终于有些实战机会了,当然也很气愤那调试的黑呼呼GCC界面,想着弄个Delphi的美丽调试界面该多好啊。越往后走,接触的C代码越多,认识些C的程序员也越多,终于发现那些自诩厉害的“核心”程序员,原来是用C的。记得一次项目的机会,接触一个在硅谷摸爬了20多年的美国架构师,每次开项目会议都把电脑带上,一面讨论一面敲打些什么,会议结束,代码架构已成。不是流程图,不是伪代码,不是文字,是真真实实的C代码。

直到今天,C语言虽然不是使用人数最多的语言了,但是C没有老去,在很多的核心系统代码里,依然跑的是设计精美的C,绝大多数的嵌入式开发核心库软件是C开发的,多数标准算法是基于标准C设计的。C语言以其简洁,灵活和性能优越,依然在核心软件设计师心目中有不可动摇的地位。

2.为什么要面向对象

面向对象是一种设计方法,刚开始学习C++的时候,接触了面向对象的方法,终于对以前写Delphi系统是托动的图图框框的控件有了更深入的认识。及至以后要用到Java,更是觉得面向对象的方便,容易理解分析问题。以至于到了现在,每当要写软件原型,我的第一反应就是用写字板来写Java,然后用javac来命令行编译,古老的打印调试。这样的开发方式好处多多,首先J***A的库比较稳定单一,不如C++的庞大繁杂,也没有内存管理的头痛事务,更重要的是能够充分发挥面向对象分析,使得自己在单位时间专注做好一个类,最后把这若干的类串起来,代码已成。重构,设计模式都不过是日后的优化提炼,没有必要硬性引入。

面向过程往往被认为是一种严格的自顶向下,逐步细分的设计方式,按部就班的大规模设计分解成小的具体实现。而面向对象是基于对象模型对问题域进行描述,更加接近于人们对客观世界的认识过程。在一般的软件工程教案中,罗列了如下面向对象的好处:(1)模块化 (2)抽象(3)信息隐藏(4)弱耦合(5)强内聚(6)可重用。而这些好处来自于运用面向对象的三个基本方法:封装、继承和多态。在实际的软件工程项目中,正是因为面向对象的这些特性,这种分析方法受到广泛欢迎并且继续保持发展,最近的J2EE项目层出不穷的框架思想正是最好的例子,无论是对象注入还是POJO都给面向对象方法增添更多新的活力。

从【1】中可以看到面向过程和面向对象对同一项目分析的简单举例,从而得到结论,面向对象是以功能来划分问题,而不是步骤。在【2】的系列文章中,作者分析了如何用C语言的结构体和函数指针模拟封装,继承和多态,并用简单的实验分析了性能损失,结果是C语言模拟类的损失可以忽略不计。基于标准C面向对象的代码示例可以从LINUX,GTK等源码中看到,本文仅仅分析FFMPEG和X264的基本架构。面向对象是一种高效的分析设计方法,而C语言没有直接支持面向对象的语法,用C来模仿C++是没有必要的,在考虑用C语言构建大型项目的时候,利用面向对象设计,并且适当的构造C语法支持这样的设计思想是需要的。

3.FFMPEG架构分析

FFMPEG是目前被应用最广泛的编解码软件库,支持多种流行的编解码器,它是C语言实现的,不仅被集成到各种PC软件,也经常被移植到多种嵌入式设备中。使用面向对象的办法来设想这样一个编解码库,首先让人想到的是构造各种编解码器的类,然后对于它们的抽象基类确定运行数据流的规则,根据算法转换输入输出对象。

在实际的代码,将这些编解码器分成encoder/decoder,muxer/demuxer和device三种对象,分别对应于编解码,输入输出格式和设备。在main函数的开始,就是初始化这三类对象。在avcodec_register_all中,很多编解码器被注册,包括视频的H.264解码器和X264编码器等,

REGISTER_DECODER (H264, h264);

REGISTER_ENCODER (LIBX264, libx264);

找到相关的宏代码如下

#define REGISTER_ENCODER(X,x) { \

extern ***Codecx##_encoder; \

if(CONFIG_##X##_ENCODER) avcodec_register(&x##_encoder); }

#define REGISTER_DECODER(X,x) { \

extern ***Codec x##_decoder;\

if(CONFIG_##X##_DECODER) avcodec_register(&x##_decoder); }

这样就实际在代码中根据CONFIG_##X##_ENCODER这样的编译选项来注册libx264_encoder和h264_decoder,注册的过程发生在avcodec_register(***Codec *codec)函数中,实际上就是向全局链表first_avcodec中加入libx264_encoder、h264_decoder特定的编解码器,输入参数***Codec是一个结构体,可以理解为编解码器的基类,其中不仅包含了名称,id等属性,而且包含了如下函数指针,让每个具体的编解码器扩展类实现。

int (*init)(***CodecContext *);

int (*encode)(***CodecContext *, uint8_t *buf, int buf_size,void *data);

int (*close)(***CodecContext *);

int (*decode)(***CodecContext *, void *outdata, int*outdata_size,

const uint8_t *buf, int buf_size);

void (*flush)(***CodecContext *);

继续追踪libx264,也就是X264的静态编码库,它在FFMPEG编译的时候被引入作为H.264编码器。在libx264.c中有如下代码

***Codec libx264_encoder = {

.name = "libx264",

.type = CODEC_TYPE_VIDEO,

.id = CODEC_ID_H264,

.priv_data_size = sizeof(X264Context),

.init = X264_init,

.encode = X264_frame,

.close = X264_close,

.capabilities = CODEC_CAP_DELAY,

.pix_fmts = (enum PixelFormat[]) { PIX_FMT_YUV420P,PIX_FMT_NONE },

.long_name = NULL_IF_CONFIG_SMALL("libx264 H.264 / ***C/ MPEG-4 ***C / MPEG-4 part 10"),

};

这里具体对来自***Codec得属性和方法赋值。其中

.init = X264_init,

.encode = X264_frame,

.close = X264_close,

将函数指针指向了具体函数,这三个函数将使用libx264静态库中提供的API,也就是X264的主要接口函数进行具体实现。pix_fmts定义了所支持的输入格式,这里4:2:0

PIX_FMT_YUV420P, ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cbsample per 2x2 Y samples)

上面看到的X264Context封装了X264所需要的上下文管理数据,

typedef struct X264Context {

x264_param_t params;

x264_t *enc;

x264_picture_t pic;

***Frame out_pic;

} X264Context;

它属于结构体***CodecContext的void*priv_data变量,定义了每种编解码器私有的上下文属性,***CodecContext也类似上下文基类一样,还提供其他表示屏幕解析率、量化范围等的上下文属性和rtp_callback等函数指针供编解码使用。

回到main函数,可以看到完成了各类编解码器,输入输出格式和设备注册以后,将进行上下文初始化和编解码参数读入,然后调用av_encode()函数进行具体的编解码工作。根据该函数的注释一路查看其过程:

1. 输入输出流初始化。

2. 根据输入输出流确定需要的编解码器,并初始化。

3. 写输出文件的各部分

重点关注一下step2和3,看看怎么利用前面分析的编解码器基类来实现多态。大概查看一下这段代码的关系,发现在FFMPEG里,可以用类图来表示大概的编解码器组合。



可以参考【3】来了解这些结构的含义(见附录)。在这里会调用一系列来自utils.c的函数,这里的avcodec_open()函数,在打开编解码器都会调用到,它将运行如下代码:

avctx->codec = codec;

avctx->codec_id = codec->id;

avctx->frame_number = 0;

if(avctx->codec->init){

ret =avctx->codec->init(avctx);

进行具体适配的编解码器初始化,而这里的avctx->codec->init(avctx)就是调用***Codec中函数指针定义的具体初始化函数,例如X264_init。

在avcodec_encode_video()和avcodec_encode_audio()被output_packet()调用进行音视频编码,将同样利用函数指针avctx->codec->encode()调用适配编码器的编码函数,如X264_frame进行具体工作。

从上面的分析,我们可以看到FFMPEG怎么利用面向对象来抽象编解码器行为,通过组合和继承关系具体化每个编解码器实体。设想要在FFMPEG中加入新的解码器H265,要做的事情如下:

1. 在config编译配置中加入CONFIG_H265_DECODER

2. 利用宏注册H265解码器

3. 定义***Codec 265_decoder变量,初始化属性和函数指针

4. 利用解码器API具体化265_decoder的init等函数指针

完成以上步骤,就可以把新的解码器放入FFMPEG,外部的匹配和运行规则由基类的多态实现了。

4. X264架构分析

X264是一款从2004年有法国大学生发起的开源H.264编码器,对PC进行汇编级代码优化,舍弃了片组和多参考帧等性能效率比不高的功能来提高编码效率,它被FFMPEG作为引入的.264编码库,也被移植到很多DSP嵌入平台。前面第三节已经对FFMPEG中的X264进行举例分析,这里将继续结合X264框架加深相关内容的了解。

查看代码前,还是思考一下对于一款具体的编码器,怎么面向对象分析呢?对熵编码部分对不同算法的抽象,还有帧内或帧间编码各种估计算法的抽象,都可以作为类来构建。

在X264中,我们看到的对外API和上下文变量都声明在X264.h中,API函数中,关于辅助功能的函数在common.c中定义

void x264_picture_alloc( x264_picture_t *pic, int i_csp, int i_width, inti_height );

void x264_picture_clean( x264_picture_t *pic );

int x264_nal_encode( void *, int *, int b_annexeb, x264_nal_t *nal );

而编码功能函数定义在encoder.c

x264_t *x264_encoder_open ( x264_param_t * );

int x264_encoder_reconfig( x264_t *, x264_param_t * );

int x264_encoder_headers( x264_t *, x264_nal_t **, int* );

int x264_encoder_encode ( x264_t *, x264_nal_t **, int*, x264_picture_t *, x264_picture_t * );

void x264_encoder_close ( x264_t * );

在x264.c文件中,有程序的main函数,可以看作做API使用的例子,它也是通过调用X264.h中的API和上下文变量来实现实际功能。

X264最重要的记录上下文数据的结构体x264_t定义在common.h中,它包含了从线程控制变量到具体的SPS、PPS、量化矩阵、cabac上下文等所有的H.264编码相关变量。其中包含如下的结构体

x264_predict_t predict_16x16[4+3];

x264_predict_t predict_8x8c[4+3];

x264_predict8x8_t predict_8x8[9+3];

x264_predict_t predict_4x4[9+3];

x264_predict_8x8_filter_t predict_8x8_filter;

x264_pixel_function_t pixf;

x264_mc_functions_t mc;

x264_dct_function_t dctf;

x264_zigzag_function_t zigzagf;

x264_quant_function_t quantf;

x264_deblock_function_t loopf;

跟踪查看可以看到它们或是一个函数指针,或是由函数指针组成的结构,这样的用法很想面向对象中的interface接口声明。这些函数指针将在x264_encoder_open()函数中被初始化,这里的初始化首先根据CPU的不同提供不同的函数实现代码段,很多与可能是汇编实现,以提高代码运行效率。其次把功能相似的函数集中管理,例如类似intra16的4种和intra4的九种预测函数都被用函数指针数组管理起来。

x264_encoder_encode()是负责编码的主要函数,而其内包含的x264_slice_write()负责片层一下的具体编码,包括了帧内和帧间宏块编码。在这里,cabac和cavlc的行为是根据h->param.b_cabac来区别的,分别运行x264_macroblock_write_cabac()和x264_macroblock_write_cavlc()来写码流,在这一部分,功能函数按文件定义归类,基本按照编码流程图运行,看起来更像面向过程的写法,在已经初始化了具体的函数指针,程序就一直按编码过程的逻辑实现。如果从整体架构来看,x264利用这种类似接口的形式实现了弱耦合和可重用,利用x264_t这个贯穿始终的上下文,实现信息封装和多态。

本文大概分析了FFMPEG/X264的代码架构,重点探讨用C语言来实现面向对象编码,虽不至于强行向C++靠拢,但是也各有实现特色,保证实用性。值得规划C语言软件项目所借鉴。



【参考文献】

1.“用例子说明面向对象和面向过程的区别

2. liyuming1978,“liyuming1978的专栏

3. “FFMpeg框架代码阅读”





附录:节选自【3】

3. 当前muxer/demuxer的匹配

在FFmpeg的文件转换过程中,首先要做的就是根据传入文件和传出文件的后缀名[FIXME]匹配

合适的demuxer和muxer。匹配上的demuxer和muxer都保存在如下所示,定义在ffmpeg.c里的

全局变量file_iformat和file_oformat中:

static ***InputFormat *file_iformat;

static ***OutputFormat *file_oformat;

3.1 demuxer匹配

在libavformat\utils.c中的static***InputFormat *av_probe_input_format2(

***ProbeData *pd, int is_opened, int *score_max)函数用途是根据传入的probe data数据

,依次调用每个demuxer的read_probe接口,来进行该demuxer是否和传入的文件内容匹配的

判断。其调用顺序如下:

void parse_options(int argc, char **argv, const OptionDef *options,

void (* parse_arg_function)(const char *));

static void opt_input_file(const char *filename)

int av_open_input_file(…… )

***InputFormat*av_probe_input_format(***ProbeData *pd,

int is_opened)

static ***InputFormat*av_probe_input_format2(……)

opt_input_file函数是在保存在const OptionDef options[]数组中,用于

void parse_options(int argc, char **argv, const OptionDef *options)中解析argv里的

“-i” 参数,也就是输入文件名时调用的。

3.2 muxer匹配

与demuxer的匹配不同,muxer的匹配是调用guess_format函数,根据main() 函数的argv里的

输出文件后缀名来进行的。

void parse_options(int argc, char **argv, const OptionDef *options,

void (* parse_arg_function)(const char *));

void parse_arg_file(const char *filename)

static void opt_output_file(const char *filename)

***OutputFormat *guess_format(constchar *short_name,

const char *filename,

const char *mime_type)

3.3 当前encoder/decoder的匹配

在main()函数中除了解析传入参数并初始化demuxer与muxer的parse_options( )函数以外,

其他的功能都是在av_encode( )函数里完成的。

在libavcodec\utils.c中有如下二个函数:

***Codec *avcodec_find_encoder(enum CodecID id)

***Codec *avcodec_find_decoder(enum CodecID id)

他们的功能就是根据传入的CodecID,找到匹配的encoder和decoder。

在av_encode( )函数的开头,首先初始化各个***InputStream和***OutputStream,然后分别调

用上述二个函数,并将匹配上的encoder与decoder分别保存在:

***InputStream->***Stream *st->***CodecContext *codec->struct ***Codec*codec与

***OutputStream->***Stream *st->***CodecContext *codec->struct ***Codec*codec变量。

4. 其他主要数据结构

4.1 ***FormatContext

***FormatContext是FFMpeg格式转换过程中实现输入和输出功能、保存相关数据的主要结构。

每一个输入和输出文件,都在如下定义的指针数组全局变量中有对应的实体。

static ***FormatContext *output_files[MAX_FILES];

static ***FormatContext *input_files[MAX_FILES];

对于输入和输出,因为共用的是同一个结构体,所以需要分别对该结构中如下定义的iformat

或oformat成员赋值。

struct ***InputFormat *iformat;

struct ***OutputFormat *oformat;

对一个***FormatContext来说,这二个成员不能同时有值,即一个***FormatContext不能同时

含有demuxer和muxer。在main( )函数开头的parse_options( )函数中找到了匹配的muxer和

demuxer之后,根据传入的argv参数,初始化每个输入和输出的***FormatContext结构,并保

存在相应的output_files和input_files指针数组中。在av_encode( )函数中,output_files

和input_files是作为函数参数传入后,在其他地方就没有用到了。

4.2 ***CodecContext

保存***Codec指针和与codec相关数据,如video的width、height,audio的sample rate等。

***CodecContext中的codec_type,codec_id二个变量对于encoder/decoder的匹配来说,最为

重要。

enum CodecType codec_type; /* see CODEC_TYPE_xxx */

enum CodecID codec_id; /* seeCODEC_ID_xxx */

如上所示,codec_type保存的是CODEC_TYPE_VIDEO,CODEC_TYPE_AUDIO等媒体类型,

codec_id保存的是CODEC_ID_FLV1,CODEC_ID_VP6F等编码方式。

以支持flv格式为例,在前述的av_open_input_file(…… ) 函数中,匹配到正确的

***InputFormat demuxer后,通过av_open_input_stream( )函数中调用***InputFormat的

read_header接口来执行flvdec.c中的flv_read_header()函数。在flv_read_header( )函数

内,根据文件头中的数据,创建相应的视频或音频***Stream,并设置***Stream中

***CodecContext的正确的codec_type值。codec_id值是在解码过程中flv_read_packet( )函

数执行时根据每一个packet头中的数据来设置的。

4.3 ***Stream

***Stream结构保存与数据流相关的编解码器,数据段等信息。比较重要的有如下二个成员:

***CodecContext *codec; /**< codec context */

void *priv_data;

其中codec指针保存的就是上节所述的encoder或decoder结构。priv_data指针保存的是和具

体编解码流相关的数据,如下代码所示,在ASF的解码过程中,priv_data保存的就是

ASFStream结构的数据。

***Stream *st;

ASFStream *asf_st;

… …

st->priv_data = asf_st;

4.4 ***InputStream/ ***OutputStream

根据输入和输出流的不同,前述的***Stream结构都是封装在***InputStream和***OutputStream

结构中,在av_encode( )函数中使用。***InputStream中还保存的有与时间有关的信息。

***OutputStream中还保存有与音视频同步等相关的信息。

4.5 ***Packet

***Packet结构定义如下,其是用于保存读取的packet数据。

typedef struct ***Packet {

int64_t pts; ///<presentation time stamp in time_base units

int64_t dts; ///<decompression time stamp in time_base units

uint8_t *data;

int size;

int stream_index;

int flags;

int duration; ///<presentation duration in time_base units (0 if not available)

void (*destruct)(struct ***Packet *);

void *priv;

int64_t pos; ///< byteposition in stream, -1 if unknown

} ***Packet;

在av_encode()函数中,调用***InputFormat的

(*read_packet)(struct ***FormatContext *, ***Packet *pkt)接口,读取输入文件的一帧数

据保存在当前输入***FormatContext的***Packet成员中。

原文:http://jmvc.blog.sohu.com/120705757.html

(jmvc)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: