您的位置:首页 > 理论基础 > 计算机网络

boost中asio网络库多线程并发处理实现,以及asio在多线程模型中线程的调度情况和线程安全。

2013-03-23 21:23 1086 查看
1、实现多线程方法:

其实就是多个线程同时调用io_service::run

for (int i = 0; i != m_nThreads; ++i)

{

boost::shared_ptr<boost::thread> pTh(new boost::thread(

boost::bind(&boost::asio::io_service::run,&m_ioService)));

m_listThread.push_back(pTh);

}

2、多线程调度情况:

asio规定:只能在调用io_service::run的线程中才能调用事件完成处理器。

注:事件完成处理器就是你async_accept、async_write等注册的句柄,类似于回调的东西。

单线程:

如果只有一个线程调用io_service::run,根据asio的规定,事件完成处理器也只能在这个线程中执行。也就是说,你所有代码都在同一个线程中运行,因此变量的访问是安全的。

多线程:

如果有多个线程同时调用io_service::run以实现多线程并发处理。对于asio来说,这些线程都是平等的,没有主次之分。如果你投递的一个请求比如async_write完成时,asio将随机的激活调用io_service::run的线程。并在这个线程中调用事件完成处理器(async_write当时注册的句柄)。如果你的代码耗时较长,这个时候你投递的另一个async_write请求完成时,asio将不等待你的代码处理完成,它将在另外的一个调用io_service::run线程中,调用async_write当时注册的句柄。也就是说,你注册的事件完成处理器有可能同时在多个线程中调用。

当然你可以使用 boost::asio::io_service::strand让完成事件处理器的调用,在同一时间只有一个, 比如下面的的代码:

socket_.async_read_some(boost::asio::buffer(buffer_),

strand_.wrap(

boost::bind(&connection::handle_read, shared_from_this(),

boost::asio::placeholders::error,

boost::asio::placeholders::bytes_transferred)));

...

boost::asio::io_service::strand strand_;

此时async_read_som完成后掉用handle_read时,必须等待其它handle_read调用完成时才能被执行(async_read_som引起的handle_read调用)。

多线程调用时,还有一个重要的问题,那就是无序化。比如说,你短时间内投递多个async_write,那么完成处理器的调用并不是按照你投递async_write的顺序调用的。asio第一次调用完成事件处理器,有可能是第二次async_write返回的结果,也有可能是第3次的。使用strand也是这样的。strand只是保证同一时间只运行一个完成处理器,但它并不保证顺序。

代码测试:

服务器:

将下面的代码编译以后,使用cmd命令提示符下传人参数<IP> <port> <threads>调用

比如:test.exe 0.0.0.0 3005 10

客服端 使用windows自带的telnet

cmd命令提示符:

telnet 127.0.0.1 3005

原理:客户端连接成功后,同一时间调用100次boost::asio::async_write给客户端发送数据,并且在完成事件处理器中打印调用序号,和线程ID。

核心代码:

void start()

{

for (int i = 0; i != 100; ++i)

{

boost::shared_ptr<string> pStr(new string);

*pStr = boost::lexical_cast<string>(boost::this_thread::get_id());

*pStr += "\r\n";

boost::asio::async_write(m_nSocket,boost::asio::buffer(*pStr),

boost::bind(&CMyTcpConnection::HandleWrite,shared_from_this(),

boost::asio::placeholders::error,

boost::asio::placeholders::bytes_transferred,

pStr,i)

);

}

}

//去掉 boost::mutex::scoped_lock lk(m_ioMutex); 效果更明显。

void HandleWrite(const boost::system::error_code& error

,std::size_t bytes_transferred

,boost::shared_ptr<string> pStr,int nIndex)

{

if (!error)

{

boost::mutex::scoped_lock lk(m_ioMutex);

cout << "发送序号=" << nIndex << ",线程id=" << boost::this_thread::get_id() << endl;

}

else

{

cout << "连接断开" << endl;

}

}

完整代码:

#include <boost/bind.hpp>

#include <boost/shared_ptr.hpp>

#include <boost/enable_shared_from_this.hpp>

#include <boost/asio.hpp>

#include <boost/lexical_cast.hpp>

#include <boost/thread.hpp>

#include <boost/thread/mutex.hpp>

#include <string>

#include <iostream>

using std::cout;

using std::endl;

using std::string;

using boost::asio::ip::tcp;

class CMyTcpConnection

: public boost::enable_shared_from_this<CMyTcpConnection>

{

public:

CMyTcpConnection(boost::asio::io_service &ser)

:m_nSocket(ser)

{

}

typedef boost::shared_ptr<CMyTcpConnection> CPMyTcpCon;

static CPMyTcpCon CreateNew(boost::asio::io_service& io_service)

{

return CPMyTcpCon(new CMyTcpConnection(io_service));

}

public:

void start()

{

for (int i = 0; i != 100; ++i)

{

boost::shared_ptr<string> pStr(new string);

*pStr = boost::lexical_cast<string>(boost::this_thread::get_id());

*pStr += "\r\n";

boost::asio::async_write(m_nSocket,boost::asio::buffer(*pStr),

boost::bind(&CMyTcpConnection::HandleWrite,shared_from_this(),

boost::asio::placeholders::error,

boost::asio::placeholders::bytes_transferred,

pStr,i)

);

}

}

tcp::socket& socket()

{

return m_nSocket;

}

private:

void HandleWrite(const boost::system::error_code& error

,std::size_t bytes_transferred

,boost::shared_ptr<string> pStr,int nIndex)

{

if (!error)

{

boost::mutex::scoped_lock lk(m_ioMutex);

cout << "发送序号=" << nIndex << ",线程id=" << boost::this_thread::get_id() << endl;

}

else

{

cout << "连接断开" << endl;

}

}

private:

tcp::socket m_nSocket;

boost::mutex m_ioMutex;

};

class CMyService

: private boost::noncopyable

{

public:

CMyService(string const &strIP,string const &strPort,int nThreads)

:m_tcpAcceptor(m_ioService)

,m_nThreads(nThreads)

{

tcp::resolver resolver(m_ioService);

tcp::resolver::query query(strIP,strPort);

tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve(query);

m_tcpAcceptor.open(endpoint.protocol());

m_tcpAcceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));

m_tcpAcceptor.bind(endpoint);

m_tcpAcceptor.listen();

StartAccept();

}

~CMyService(){Stop();}

public:

void Stop()

{

m_ioService.stop();

for (std::vector<boost::shared_ptr<boost::thread>>::const_iterator it = m_listThread.cbegin();

it != m_listThread.cend(); ++ it)

{

(*it)->join();

}

}

void Start()

{

for (int i = 0; i != m_nThreads; ++i)

{

boost::shared_ptr<boost::thread> pTh(new boost::thread(

boost::bind(&boost::asio::io_service::run,&m_ioService)));

m_listThread.push_back(pTh);

}

}

private:

void HandleAccept(const boost::system::error_code& error

,boost::shared_ptr<CMyTcpConnection> newConnect)

{

if (!error)

{

newConnect->start();

}

StartAccept();

}

void StartAccept()

{

CMyTcpConnection::CPMyTcpCon newConnect = CMyTcpConnection::CreateNew(m_tcpAcceptor.get_io_service());

m_tcpAcceptor.async_accept(newConnect->socket(),

boost::bind(&CMyService::HandleAccept, this,

boost::asio::placeholders::error,newConnect));

}

private:

boost::asio::io_service m_ioService;

boost::asio::ip::tcp::acceptor m_tcpAcceptor;

std::vector<boost::shared_ptr<boost::thread>> m_listThread;

std::size_t m_nThreads;

};

int main(int argc, char* argv[])

{

try

{

if (argc != 4)

{

std::cerr << "<IP> <port> <threads>\n";

return 1;

}

int nThreads = boost::lexical_cast<int>(argv[3]);

CMyService mySer(argv[1],argv[2],nThreads);

mySer.Start();

getchar();

mySer.Stop();

}

catch (std::exception& e)

{

std::cerr << "Exception: " << e.what() << "\n";

}

return 0;

}

测试发现和上面的理论是一致的,发送序号是乱的,线程ID也不是同一个。

asio多线程中线程的合理个数:

作为服务器,在不考虑省电的情况下,应该尽可能的使用cpu。也就是说,为了让cpu都忙起来,你的线程个数应该大于等于你电脑的cpu核心数(一个核心运行一个线程)。具体的值没有最优方案,大多数人使用cpu核心数*2 + 2的这种方案,但它不一定适合你的情况。

asio在windows xp等系统中的实现:

asio在windows下使用完成端口,如果你投递的请求没有完成,那么这些线程都在等待GetQueuedCompletionStatus的返回,也就是等待内核对象,此时线程是不占用cpu时间的。


                                            
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐