您的位置:首页 > 理论基础 > 数据结构算法

字符设备驱动程序中重要的三个数据结构file_operations、inode、file

2013-01-17 21:19 459 查看
字符设备驱动程序中重要的三个数据结构file_operations、inode、file

在学习字符设备驱动的开始,我们必须了解的是三个很重要的数据结构,他们分别是file_operations、inode、file。下面陶毛毛同学就和大家一起来学习这三个数据结构。

struct _file_operations在Fs.h这个文件里面被定义的,如下所示:

struct file_operations {
struct module *owner;//拥有该结构的模块的指针,一般为THIS_MODULES
loff_t (*llseek) (struct file *, loff_t, int);//用来修改文件当前的读写位置
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);//从设备中同步读取数据
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);//向设备发送数据

ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);//初始化一个异步的读取操作
ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);//初始化一个异步的写入操作
int (*readdir) (struct file *, void *, filldir_t);//仅用于读取目录,对于设备文件,该字段为NULL
unsigned int (*poll) (struct file *, struct poll_table_struct *); //轮询函数,判断目前是否可以进行非阻塞的读写或写入
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); //执行设备I/O控制命令
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); //不使用BLK文件系统,将使用此种函数指针代替ioctl
long (*compat_ioctl) (struct file *, unsigned int, unsigned long); //在64位系统上,32位的ioctl调用将使用此函数指针代替
int (*mmap) (struct file *, struct vm_area_struct *); //用于请求将设备内存映射到进程地址空间
int (*open) (struct inode *, struct file *); //打开
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *); //关闭
int (*fsync) (struct file *, struct dentry *, int datasync); //刷新待处理的数据
int (*aio_fsync) (struct kiocb *, int datasync); //异步刷新待处理的数据
int (*fasync) (int, struct file *, int); //通知设备FASYNC标志发生变化
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
int (*check_flags)(int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **);
};

Linux使用file_operations结构访问驱动程序的函数,这个结构的每一个成员的名字都对应着一个调用。用户进程利用在对设备文件进行诸如read/write操作的时候,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数,这是Linux的设备驱动程序工作的基本原理。

下面是struct inode结构体。

struct inode {
struct hlist_node i_hash; //哈希表
struct list_head i_list; //索引节点链表
struct list_head i_sb_list;//目录项链表
struct list_head i_dentry;
unsigned long i_ino; //节点号
atomic_t i_count; //引用记数
unsigned int i_nlink; //硬链接数
uid_t i_uid; /*使用者id */
gid_t i_gid; /*使用者id组*/
dev_t i_rdev; //该成员表示设备文件的inode结构,它包含了真正的设备编号。
u64 i_version;
loff_t i_size; /*inode多代表的文件的大小*/
#ifdef __NEED_I_SIZE_ORDERED
seqcount_t i_size_seqcount;
#endif
struct timespec i_atime; /*inode最后一次存取的时间*/
struct timespec i_mtime; /*inode最后一次修改的时间*/
struct timespec i_ctime; /*inode的创建时间*/
unsigned int i_blkbits; /*inode在做I/O时的区块大小*/
blkcnt_t i_blocks; /*inode所石油的block块数*/
unsigned short i_bytes;
umode_t i_mode; /*inode的权限*/
spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
struct mutex i_mutex;
struct rw_semaphore i_alloc_sem;
const struct inode_operations *i_op;
const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
struct super_block *i_sb;
struct file_lock *i_flock;
struct address_space *i_mapping;
struct address_space i_data;
#ifdef CONFIG_QUOTA
struct dquot *i_dquot[MAXQUOTAS];
#endif
struct list_head i_devices; /*若是字符设备,为其对应的cdev结构体指针*/
union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev; /*若是块设备,为其对应的cdev结构体指针*/
struct cdev *i_cdev; //该成员表示字符设备的内核的 内部结构。当inode指向一个字符设备文件时,该成员包含了指向struct cdev结构的指针,其中cdev结构是字符设备结构体。
};
int i_cindex;
__u32 i_generation;
#ifdef CONFIG_DNOTIFY
unsigned long i_dnotify_mask; /* Directory notify events */
struct dnotify_struct *i_dnotify; /* for directory notifications */
#endif
#ifdef CONFIG_INOTIFY
struct list_head inotify_watches; /* watches on this inode */
struct mutex inotify_mutex; /* protects the watches list */
#endif
unsigned long i_state;
unsigned long dirtied_when; /* jiffies of first dirtying */
unsigned int i_flags;
atomic_t i_writecount;
#ifdef CONFIG_SECURITY
void *i_security;
#endif
void *i_private; /* fs or device private pointer */
};

内核中用inode结构表示具体的文件,也就是对应与硬盘上面具体的文件。提供了设备文件的信息。inode译成中文就是索引节点。每个存储设备或存储设备的分区(存储设备是硬盘、软盘、U盘 ... ... )被格式化为文件系统后,应该有两部份,一部份是inode,另一部份是Block,Block是用来存储数据用的。而inode呢,就是用来存储这些数据的信息,这些信息包括文件大小、属主、归属的用户组、读写权限等。inode为每个文件进行信息索引,所以就有了inode的数值。操作系统根据指令,能通过inode值最快的找到相对应的文件。

最后是struct file。

struct file {
/*
* fu_list becomes invalid after file_free is called and queued via
* fu_rcuhead for RCU freeing
*/
union {
struct list_head fu_list;
struct rcu_head fu_rcuhead;
} f_u;
struct path f_path;
#define f_dentry f_path.dentry //该成员是对应的 目录结构 。
#define f_vfsmnt f_path.mnt
const struct file_operations *f_op; //该操作 是定义文件关联的操作的。内核在执行open时对这个指针赋值。
atomic_long_t f_count;//文件的引用计数(有多少进程打开该文件)
unsigned int f_flags; //该成员是文件标志。
mode_t f_mode;//读写模式:open的mod_t mode参数
loff_t f_pos;//该文件在当前进程中的文件偏移量
struct fown_struct f_owner;//该结构的作用是通过信号进行I/O时间通知的数据
unsigned int f_uid, f_gid;//文件所有者id,所有者组id
struct file_ra_state f_ra;

u64 f_version;
#ifdef CONFIG_SECURITY
void *f_security;
#endif
/* needed for tty driver, and maybe others */
void *private_data;//该成员是系统调用时保存状态信息非常有用的资源。

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */
struct list_head f_ep_links;
spinlock_t f_ep_lock;
#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;
#ifdef CONFIG_DEBUG_WRITECOUNT
unsigned long f_mnt_write_state;
#endif
};

文件结构代表一个打开的文件描述符,它不是专门给驱动程序使用的,系统中每一个打开的文件在内核中都有一个关联的struct file。它由内核在open时创建,并传递给在文件上操作的任何函数,知道最后关闭。当文件的所有实例都关闭之后,内核释放这个数据结构。

最后:总结一下,struct operations存在于设备驱动程序内部,起着联系应用程序和设备驱动的作用。struct inode存在于磁盘上,作为描述设备驱动文件的信息的作用。struct file是在执行open函数时产生的,每打开一个文件就产生一个struct file,供设备驱动关联的函数使用。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  设备驱动
相关文章推荐