您的位置:首页 > 编程语言 > C语言/C++

C语言 控制转移 异常处理机制 setjmp & longjmp

2012-05-22 10:10 267 查看
C语言中有一个goto语句,其可以结合标号实现函数内部的任意跳转(通常情况下,很多人都建议不要使用goto语句,因为采用goto语句后,代码维护工作量加大)。另外,C语言标准中还提供一种非局部跳转“no-local goto",其通过标准库<setjmp.h>中的两个标准函数setjmplongjmp来实现。

C标准库<setjmp.h>

下面是K&R的《C程序设计语言(第2版 . 新版)》第232页给出的关于标准库<setjmp.h>的说明。

 8 非局部跳转<setjmp.h>
头文件<setjmp.h>中的说明提供了一种避免通常的函数调用和返回顺序的途径,特别的,它允许立即从一个多层嵌套的函数调用中返回。

8.1 setjmp

#include <setjmp.h>

int setjmp(jmp_buf env);

setjmp()宏把当前状态信息保存到env中,供以后longjmp()恢复状态信息时使用。如果是直接调用setjmp(),那么返回值为0;如果是由于调用longjmp()而调用setjmp(),那么返回值非0。setjmp()只能在某些特定情况下调用,如在if语句、 switch语句及循环语句的条件测试部分以及一些简单的关系表达式中。

8.2 longjmp

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

longjmp()用于恢复由最近一次调用setjmp()时保存到env的状态信息。当它执行完时,程序就象setjmp()刚刚执行完并返回非0值val那样继续执行。包含setjmp()宏调用的函数一定不能已经终止。所有可访问的对象的值都与调用longjmp()时相同,唯一的例外是,那些调用setjmp()宏的函数中的非volatile自动变量如果在调用setjmp()后有了改变,那么就变成未定义的。

jmp_buf是setjmp.h中定义的一个结构类型,其用于保存系统状态信息。宏函数setjmp会将其所在的程序点的系统状态信息保存到某个jmp_buf的结构变量env中,而调用函数longjmp会将宏函数setjmp保存在变量env中的系统状态信息进行恢复,于是系统就会跳转到setjmp()宏调用所在的程序点继续进行。这样setjmp/longjmp就实现了非局部跳转的功能。

一个简单的例子:

下面我们来看一个简单的例子。

#include <stdio.h>
#include <setjmp.h>

jmp_buf jump_buffer;

void func(void)
{
printf("Before calling longjmp\n");
longjmp(jump_buffer, 1);
printf("After calling longjmp\n");
}
void func1(void)
{
printf("Before calling func\n");
func();
printf("After calling func\n");
}
int main()
{
if (setjmp(jump_buffer) == 0){
printf("first calling set_jmp\n");
func1();
}else {
printf("second calling set_jmp\n");
}
return 0;
}

代码的运行结果如下

first calling set_jmp
Before calling func
Before calling longjmp
second calling set_jmp


通过上面这个简单例子的运行结果可以看出。main函数运行的setjmp()宏调用,将当前程序点的系统状态信息保存到全局变量jump_buffer中,然后返回结果0。于是,代码打印出字符串"first calling set_jmp",然后调用函数func1()。在函数func1中,先打印字符串"Before calling func",然后去调用函数func()。现在程序控制流转到func函数中,函数func先打印字符串“Before calling longjmp",然后调用函数longjmp。这时候关键点到了!!!longjmp函数将main函数中setjmp()宏调用设置在全局变量jump_buffer中的系统状态信息恢复到系统的相应寄存器中,导致程序的控制流跳转到了main函数中setjmp()宏调用所在的程序点,此时相当于第二次进行setjmp()宏调用,并且此时的setjmp()宏调用的返回不再是0,而是传递给函数调用longjmp()的第二个参数1。于是程序控制流转到main函数中if语句的else部分执行,打印字符串“second
calling set_jmp“。最后,执行main函数中的语句“reture 0;”返回,程序运行结束退出。

 

从上面的运行过程,我们可以看出在longjmp()函数调用处的程序点嵌套在三层函数调用中:main, func1和func,但是longjmp()函数调用导致程序控制流跳过函数调用func和func1,直接回到main函数中setjmp()宏调用所在的程序点,然后执行main函数中后续的语句,从而忽略了函数func1和func中后续的语句部分。这就是非局部跳转。

非局部跳转的实现机制

C语言的运行控制模型,是一个基于栈结构的指令执行序列,表现出来就是call/return: call调用一个函数,然后return从一个函数返回。在这种运行控制模型中,每个函数调用都会对应着一个栈帧,其中保存了这个函数的参数、返回值地址、局部变量以及控制信息等内容。当调用一个函数时,系统会创建一个对应的栈帧压入栈中,而从一个函数返回时,则系统会将该函数对应的栈帧从栈顶退出。正常的函数跳转就是这样从栈顶一个一个栈帧逐级地返回。

 

另外,系统内部有一些寄存器记录着当前系统的状态信息,其中包括当前栈顶位置、位于栈顶的栈帧位置以及其他一些系统信息(例如代码段,数据段等等)。这些寄存器指示了当前程序运行点的系统状态,可以称为程序点。在宏函数setjmp中就是将这些系统寄存器的内容保存到jmp_buf类型变量env中,然后在函数longjmp中将函数setjmp保存在变量env中的系统状态信息恢复,此时系统寄存器中指示的栈顶的栈帧就是调用宏函数setjmp时的栈顶的栈帧。于是,相当控制流跳过了中间的若干个函数调用对应的栈帧,到达setjmp所在那个函数的栈帧。这就是非局部跳转的实现机制,其不同于上面所说的call/return跳转机制。

 

正是因为这种实现机制,在上面的标准库说明中提到:“包含setjmp()宏调用的函数一定不能终止”。如果该函数终止的话,该函数对应的栈帧也已经从系统栈中退出,于是setjmp()宏调用保存在env中的内容在longjmp函数恢复时,就不再是setjmp()宏调用所在程序点。此时,调用函数longjmp()就会出现不可预测的错误。 

转载

http://www.cnblogs.com/lienhua34/archive/2012/04/22/2464859.html

参考

http://www.di.unipi.it/~nids/docs/longjump_try_trow_catch.html
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  语言 c buffer 测试 工作