您的位置:首页 > 编程语言 > Java开发

Java线程新同步机制

2012-05-07 10:48 417 查看
Java线程新的同步机制

1.可重入锁ReentrantLock,相当于synchronized块,为临界区提供互斥访问机制.

(1).相关的接口

创建一个可重入锁

Lock lock = new ReentrantLock();

请求锁,如果锁被当前另一个线程持有,则阻塞。

void lock()

释放锁

void unlock();

非阻塞型lock()

boolean tryLock();

(2).使用基本结构

locker.lock();

try{

//code here to access the cirtical section

}finally{

locker.unlock();

}

这种结构保证在任何时刻只有一个线程能够进入临界区,如果一个线程锁住了锁对象,其他任何线程在调用lock时,都会被阻塞,直到第一个线程释放锁对象。而且无论try块是否抛出异常,都会执行finally block,解锁locker.

(3).锁的可重入性:锁是可重入的,线程能够重复地获取它已经拥有的锁。锁对象维护一个持有计数(hold count)来追踪对lock方法的嵌套调用。线程在每次调用lock后都要调用unlock来释放锁。由于这个特性,被一个锁保护的代码可以调用另一个使用相同锁的方法。

(4).示例代码:

Java代码


import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class WorkerOne extends Thread{

private Lock locker;

public WorkerOne (Lock locker){
this.locker = locker;
}

public void run(){

locker.lock();

try{
System.out.println(Thread.currentThread().getName()+":step into critical section");
}finally{
locker.unlock();
}
}
}

class WorkerTwo extends Thread{

private Lock locker;

public WorkerTwo (Lock locker){
this.locker = locker;
}

public void sayHello(){

locker.lock();

try{
System.out.println(Thread.currentThread().getName()+":call sayHello()");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}finally{

locker.unlock();
}
}

public void run(){

locker.lock();

try{
System.out.println(Thread.currentThread().getName()+":setp into critical section");
//测试锁的可重入性
sayHello();
}finally{
locker.unlock();
}
}
}

public class Test5 {

public static void main(String[] args) {

Lock locker = new ReentrantLock();

WorkerOne wo= new WorkerOne(locker);
wo.setName("WorkerOne");

WorkerTwo wt = new WorkerTwo(locker);
wt.setName("WorkerTwo");

wt.start();
wo.start();
}
}

输出:

WorkerTwo:setp into critical section

WorkerTwo:call sayHello()

WorkerOne:step into critical section

2.条件对象Condition,相当于wait-notify机制,提供一种线程间的等待通知机制,condition中的等待-通知方法是await(),signal

(),signalAll(),也需要在互斥环境下被调用。

(1)相关的接口

创建Condition对象,Condition对象是跟Lock关联在一起的.

Lock locker = new ReentrantLock();

Condition cond = locker.newCondition();

把此线程放到条件的等待集中。

void await();

解除此条件的等待集中所有线程的阻塞状态

void signalAll();

在此条件的等待集中随机选择一个线程,解除其阻塞状态。

void signal();

(2).使用的基本结构

Java代码


//初始时ok_to_proceed为false.
locker.lock()

try{
while(!ok_to_proceed){
//进入等待此条件集中,被阻塞,它维持状态直到另一个线程调用同一个条件上的
//signalAll/signal方法时为止。
cond.await();
}
}finally{
cker.unlock();
}

Java代码


locker.lock();
try{
//调用将解除所有等待此条件下的线程的阻塞状态。当线程从等待集中被移走时,它们将再次成为可运行的,调度器将再次激活它们
//此时,它们将试图重新进入对象。一旦锁可获得,它们中的某个线程将从await调用返回,从而获得锁并从它被阻塞的地方继续执行。
ok_to_proceed = true;
cond.signalAll() or cond.signal();

}finally{
locker.unlock();
}

ok_to_proceed也是为了防止wait-notify出现的问题,即再wait之间,notify()已经给出通知,此时wait只会一直等待下去,这样就保证了signal()线程的通知被await()线程接收到。

(3)测试代码:

Java代码


import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class GlobalV{

public final static Lock locker = new ReentrantLock();
public final static Condition cond = locker.newCondition();
public static boolean to_proceed = false;
}

class Response extends Thread{

public void run(){

while(true){

GlobalV.locker.lock();

try{

while(!GlobalV.to_proceed){
GlobalV.cond.await();
}

System.out.println("Response:finish a job");
GlobalV.to_proceed = false;

}catch(Exception e){
e.printStackTrace();
}finally{
GlobalV.locker.unlock();
}
}
}
}

class Request extends Thread{

public void run(){

while(true){

GlobalV.locker.lock();

try{

GlobalV.to_proceed = true;
GlobalV.cond.signalAll();
System.out.println("Request:send a job to Response");

}finally{
GlobalV.locker.unlock();
}

try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}

}
}
}

public class Test6 {

public static void main(String[] args) {

Request req = new Request();
Response res = new Response();

req.start();
res.start();
}
}

输出:

Request:send a job to Response

Response:finish a job

Request:send a job to Response

Response:finish a job

Request:send a job to Response

Response:finish a job

Request:send a job to Response

Response:finish a job

3.读写锁ReentrantReadWriteLock,适用于"读多写少"的多线程应用场景,"读-写"互斥,"写-写"互斥,而读-读可以共享同读锁,即一个线程获取读锁,其它线程可直接进入读,不会被阻塞。

(1).相关接口

创建读写锁对象

ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();

获取读锁

Lock readLock = rwLock.readLock();

获取写锁

Lock writeLock = rwLock.writeLock();

(2).读写锁使用基本结构

//对所有的读操作添加读锁

Java代码


readLock.lock();

try{
//code to read

}finally{
readLock.unlock();
}

//对所有的写操作添加写锁

Java代码


writeLock.lock();
try{

//code to write
}finally{
writeLock.unlock();
}

(3).测试代码:

Java代码


import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

class Reader extends Thread {

private Lock readLock = null;

public Reader(Lock readLock) {
this.readLock = readLock;
}

public void run() {

while (true) {
readLock.lock();

try {
System.out.println(Thread.currentThread().getName()
+ ":read action for 1 seconds-"+ReadWriteLock.testVal);

} finally {
readLock.unlock();
}

try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}

class Writer extends Thread {

private Lock writeLock = null;

public Writer(Lock writeLock) {
this.writeLock = writeLock;
}

public void run() {

while (true) {
writeLock.lock();

try {

System.out.println(Thread.currentThread().getName()
+ ":write action for 2 seconds");

if(ReadWriteLock.testVal.equals("1111"))
ReadWriteLock.testVal = "2222";
else
ReadWriteLock.testVal = "1111";

} finally {
writeLock.unlock();
}

try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}

}

public class ReadWriteLock {

public static String testVal = "Initiation";

public static void main(String[] args) {

ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
Lock readLock = lock.readLock();
Lock writeLock = lock.writeLock();

Reader reader1 = new Reader(readLock);
reader1.setName("reader1");

Reader reader2 = new Reader(readLock);
reader2.setName("reader2");

Reader reader3 = new Reader(readLock);
reader3.setName("reader3");

Reader reader4 = new Reader(readLock);
reader4.setName("reader4");

Writer writer = new Writer(writeLock);
writer.setName("writer1");

reader1.start();
reader2.start();
reader3.start();
reader4.start();

writer.start();
}

}

输出:

reader1:read action for 1 seconds-Initiation

reader3:read action for 1 seconds-Initiation

writer1:write action for 2 seconds

reader2:read action for 1 seconds-1111

reader4:read action for 1 seconds-1111

reader3:read action for 1 seconds-1111

reader1:read action for 1 seconds-1111

reader4:read action for 1 seconds-1111

reader2:read action for 1 seconds-1111

writer1:write action for 2 seconds

reader4:read action for 1 seconds-2222

reader1:read action for 1 seconds-2222

reader3:read action for 1 seconds-2222

reader2:read action for 1 seconds-2222

4.总结

(1).Lock接口替代synchronized

Lock接口可以比sychronized提供更广泛的锁定操作.可以提供多把不同的锁.且锁之间互不干涉.

Lock接口提供lock()与unlock()方法, 使用明确调用来完成同步的, OO思想好于前者.

Lock可以自由操控同步范围(scope).

Lock接口支持nested lock(嵌套锁定).并提供了丰富的api.

Lock接口提供了tryLock()方法, 支持尝试取得某个object lock.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: