您的位置:首页 > 编程语言 > C语言/C++

在C++中使用cpuid指令获得CPU信息

2012-04-23 22:50 477 查看
From: http://freeman.cnblogs.com/archive/2005/08/30/226128.html
1、什么是cpuid指令

CPUID指令是intel IA32架构下获得CPU信息的汇编指令,可以得到CPU类型,型号,制造商信息,商标信息,序列号,缓存等一系列CPU相关的东西。

2、cpuid指令的使用

cpuid使用eax作为输入参数,eax,ebx,ecx,edx作为输出参数,举个例子:

__asm

{

mov eax, 1

cpuid

...

}

以上代码以1为输入参数,执行cpuid后,所有寄存器的值都被返回值填充。针对不同的输入参数eax的值,输出参数的意义都不相同。

为了更好的在C++中使用cpuid指令,可以使用类对指令进行封装,在类中定义一个专门的函数负责cpuid的执行,他需要一个输入参数。还需要定义四个成员变量存储cpuid执行以后返回来的值。由于这四个寄存器都是32位长的,可以使用unsinged long 类型变量存储。

typedef unsigned long DWORD

class CPUID

{

public:

...

private:

void Executecpuid(DWORD eax); // 用来实现cpuid

DWORD m_eax; // 存储返回的eax

DWORD m_ebx; // 存储返回的ebx

DWORD m_ecx; // 存储返回的ecx

DWORD m_edx; // 存储返回的edx

...

}

void CPUID::Executecpuid(DWORD veax)

{

// 因为嵌入式的汇编代码不能识别 类成员变量

// 所以定义四个临时变量作为过渡

DWORD deax;

DWORD debx;

DWORD decx;

DWORD dedx;

__asm

{

mov eax, veax ;将输入参数移入eax

cpuid ;执行cpuid

mov deax, eax ;以下四行代码把寄存器中的变量存入临时变量

mov debx, ebx

mov decx, ecx

mov dedx, edx

}

m_eax = deax; // 把临时变量中的内容放入类成员变量

m_ebx = debx;

m_ecx = decx;

m_edx = dedx;

}

这样就可以通过直接调用Executecupid()函数的方式来执行cpuid指令了,返回值存在类成员变量m_eax, m_ebx, m_ecx和m_edx中。

3、获得CPU的制造商信息(Vender ID String)

把eax = 0作为输入参数,可以得到CPU的制造商信息。

cpuid指令执行以后,会返回一个12字符的制造商信息,前四个字符的ASC码按低位到高位放在ebx,中间四个放在edx,最后四个字符放在ecx。比如说,对于intel的cpu,会返回一个“GenuineIntel”的字符串,返回值的存储格式为:

31 23 15 07 00

EBX| u (75)| n (6E)| e (65)| G (47)

EDX| I (49)| e (65)| n (6E)| i (69)

ECX| l (6C)| e (65)| t (74)| n (6E)

因此可以这样实现他:

string CPUID::GetVID()

{

char cVID[13]; // 字符串,用来存储制造商信息

memset(cVID, 0, 13); // 把数组清0

Executecpuid(0); // 执行cpuid指令,使用输入参数 eax = 0

memcpy(cVID, &m_ebx, 4); // 复制前四个字符到数组

memcpy(cVID+4, &m_edx, 4); // 复制中间四个字符到数组

memcpy(cVID+8, &m_ecx, 4); // 复制最后四个字符到数组

return string(cVID); // 以string的形式返回

}

4、获得CPU商标信息(Brand String)

在我的电脑上点击右键,选择属性,可以在窗口的下面看到一条CPU的信息,这就是CPU的商标字符串。CPU的商标字符串也是通过cpuid得到的。由于商标的字符串很长(48个字符),所以不能在一次cpuid指令执行时全部得到,所以intel把它分成了3个操作,eax的输入参数分别是0x80000002,0x80000003,0x80000004,每次返回的16个字符,按照从低位到高位的顺序依次放在eax, ebx,ecx, edx。因此,可以用循环的方式,每次执行完以后保存结果,然后执行下一次cpuid。

string CPUID::GetBrand()

{

const DWORD BRANDID = 0x80000002; // 从0x80000002开始,到0x80000004结束

char cBrand[49]; // 用来存储商标字符串,48个字符

memset(cBrand, 0, 49); // 初始化为0

for (DWORD i = 0; i < 3; i++) // 依次执行3个指令

{

Executecpuid(BRANDID + i);

memcpy(cBrand + i*16, &m_eax, 16); // 每次执行结束后,保存四个寄存器里的asc码到数组

} // 由于在内存中,m_eax, m_ebx, m_ecx, m_edx是连续排列

// 所以可以直接以内存copy的方式进行保存

return string(cBrand); // 以string的形式返回

}

5、检测CPU特性(CPU feature)

我98年初买第一台电脑的时候,CPU能支持MMX就很了不起了。现在的intelCPU,台式机的好点的都支持Hyper-Threading了,移动的要支持SpeedSted。这些都是CPU的特性。CPU的特性可以通过cpuid获得,参数是eax =1,返回值放在edx和ecx,通过验证edx或者ecx的某一个bit,可以获得CPU的一个特性是否被支持。比如说,edx的bit32代表是否支持MMX,edx的bit 28代表是否支持Hyper-Threading,ecx的bit 7代表是否支持speedsted。下面就是获得CPU特性的例子:

bool CPUID::IsHyperThreading() // 判断是否支持hyper-threading

{

Executecpuid(1); // 执行cpuid指令,使用输入参数 eax = 1

return m_edx & (1<<28); // 返回edx的bit 28

}

bool CPUID::IsEST() // 判断是否支持speed step

{

Executecpuid(1); // 执行cpuid指令,使用输入参数 eax = 1

return m_ecx & (1<<7); // 返回ecx的bit 7

}

bool CPUID::IsMMX() // 判断是否支持MMX

{

Executecpuid(1); // 执行cpuid指令,使用输入参数 eax = 1

return m_edx & (1<<23); // 返回edx的bit 23

}

CPU的特性还有很多,这只是平时我们听到比较多的三个,更多的特性请参考intel的资料。

6、获得CPU的缓存(cache)



缓存,就是CACHE,已经成为判断CPU性能的一项大指标。缓存信息包括:第几级缓存(level),缓存大小(size),通道数(way),吞吐量(line size)。因此可以使用一个结构体来存储缓存信息。

struct CacheInfo

{

int level; // 第几级缓存

int size; // 缓存大小,单位KB

int way; // 通道数

int linesize; // 吞吐量

CacheInfo() // 构造函数

{

level = 0;

size = 0;

way = 0;

linesize = 0;

}

CacheInfo(int clevel, int csize, int cway, int clinesize) // 构造函数

{

level = clevel;

size = csize;

way = cway;

linesize = clinesize;

}

};



缓存信息可以通过eax = 2的cpuid来得到(得到的不光有cache信息,还有其他的一些信息),返回值在eax(高24位), ebx,ecx和edx,总共15个BYTE的信息,每个BYTE的值不同,代表的意义也不同,所以需要用一个哈希表存储各种不同BYTE的定义,可以定义一个map类型的类成员存储这些资料。我把资料上和缓存有关的信息存储如下:

m_cache[0x06] = CacheInfo(1, 8, 4, 32);

m_cache[0x08] = CacheInfo(1, 16, 4, 32);

m_cache[0x0a] = CacheInfo(1, 8, 2, 32);

m_cache[0x0c] = CacheInfo(1, 16, 4, 32);

m_cache[0x2c] = CacheInfo(1, 32, 8, 64);

m_cache[0x30] = CacheInfo(1, 32, 8, 64);

m_cache[0x60] = CacheInfo(1, 16, 8, 64);

m_cache[0x66] = CacheInfo(1, 8, 4, 64);

m_cache[0x67] = CacheInfo(1, 16, 4, 64);

m_cache[0x68] = CacheInfo(1, 32, 4, 64);

m_cache[0x39] = CacheInfo(2, 128, 4, 64);

m_cache[0x3b] = CacheInfo(2, 128, 2, 64);

m_cache[0x3c] = CacheInfo(2, 256, 4, 64);

m_cache[0x41] = CacheInfo(2, 128, 4, 32);

m_cache[0x42] = CacheInfo(2, 256, 4, 32);

m_cache[0x43] = CacheInfo(2, 512, 4, 32);

m_cache[0x44] = CacheInfo(2, 1024, 4, 32);

m_cache[0x45] = CacheInfo(2, 2048, 4, 32);

m_cache[0x79] = CacheInfo(2, 128, 8, 64);

m_cache[0x7a] = CacheInfo(2, 256, 8, 64);

m_cache[0x7b] = CacheInfo(2, 512, 8, 64);

m_cache[0x7c] = CacheInfo(2, 1024, 8, 64);

m_cache[0x82] = CacheInfo(2, 256, 8, 32);

m_cache[0x83] = CacheInfo(2, 512, 8, 32);

m_cache[0x84] = CacheInfo(2, 1024, 8, 32);

m_cache[0x85] = CacheInfo(2, 2048, 8, 32);

m_cache[0x86] = CacheInfo(2, 512, 4, 64);

m_cache[0x87] = CacheInfo(2, 1024, 8, 64);

m_cache[0x22] = CacheInfo(3, 512, 4, 64);

m_cache[0x23] = CacheInfo(3, 1024, 8, 64);

m_cache[0x25] = CacheInfo(3, 2048, 8, 64);

m_cache[0x29] = CacheInfo(3, 4096, 8, 64);

m_cache是类成员,定义如下:

map<int, CacheInfo> m_cache; // Cache information table

在得到返回值以后,只需要遍历每一个BYTE的值,找到在m_cache中存在的元素,就可以得到cache信息了。代码如下:

typedef unsigned char BYTE;

DWORD CPUID::GetCacheInfo(CacheInfo& L1, CacheInfo& L2, CacheInfo& L3)

{

BYTE cValues[16]; // 存储返回的16个byte值

DWORD result = 0; // 记录发现的缓存数量

Executecpuid(2); // 执行cpuid,参数为eax = 2

memcpy(cValues, &m_eax, 16); // 把m_eax, m_ebx, m_ecx和m_edx存储到cValue

for (int i = 1; i < 16; i++) // 开始遍历,注意eax的第一个byte没有意义,需要跳过

{

if (m_cache.find(cValues[i]) != m_cache.end()) // 从表中查找此信息是否代表缓存

{

switch (m_cache[cValues[i]].level) // 对号入座,保存缓存信息

{

case 1: // L1 cache

L1 = m_cache[cValues[i]];

break;

case 2: // L2 cache

L2 = m_cache[cValues[i]];

break;

case 3: // L3 cache

L3 = m_cache[cValues[i]];

break;

default:

break;

}

result++;

}



}

return result;

}



7、获得CPU的序列号

序列号无处不在!!CPU的序列号用一个96bit的串表示,格式是连续的6个WORD值:XXXX-XXXX-XXXX-XXX-XXXX-XXXX。WORD是16个bit长的数据,可以用unsigned short模拟:

typedef unsigned short WORD;

获得序列号需要两个步骤,首先用eax = 1做参数,返回的eax中存储序列号的高两个WORD。用eax = 3做参数,返回ecx和edx按从低位到高位的顺序存储前4个WORD。实现如下:

bool CPUID::GetSerialNumber(SerialNumber& serial)

{

Executecpuid(1); // 执行cpuid,参数为 eax = 1

bool isSupport = m_edx & (1<<18); // edx是否为1代表CPU是否存在序列号

if (false == isSupport) // 不支持,返回false

{

return false;

}

memcpy(&serial.nibble[4], &m_eax, 4); // eax为最高位的两个WORD

Executecpuid(3); // 执行cpuid,参数为 eax = 3

memcpy(&serial.nibble[0], &m_ecx, 8); // ecx 和 edx为低位的4个WORD

return true;

}

8、后记

CPUID还能获得很多信息,以上实现的都是最常见的。完整的代码和有关cpuid的资料我会用附件的形式附在文章结尾。昨天代码写完后拿给朋友看,朋友骂我使用了太多的memcpy()函数进行赤裸裸的内存操作...其实我这么做的目的是提高程序的性能,减少代码量,但是可读性就降了下来,不喜欢这种风格的朋友可以自己改一下。还有,因为CPUID类只是提供了很多的接口,没有存储数据的功能,所以类以Singleton的方式设计,使用方法可以参考我代码中的test2.cpp文件。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: