您的位置:首页 > 编程语言 > Java开发

数据挖掘-基于贝叶斯算法及KNN算法的newsgroup18828文档分类器的JAVA实现(上)

2012-03-27 23:06 806 查看
本文主要描述基于贝叶斯算法及KNN算法的newsgroup18828文档分类器的设计及实现,包括数据预处理、贝叶斯算法及KNN算法实现。本分类器的完整工程可以到点击打开链接下载,详细说明的运行方法,用eclipse可以运行,学习数据挖掘的朋友可以跑一下,有问题可以联系我,欢迎交流:)。本文主要内容如下:

对newsgroup文档集进行预处理,提取出30095 个特征词

计算每篇文档中的特征词的TF*IDF值,实现文档向量化,在KNN算法中使用

用JAVA实现了KNN算法及朴素贝叶斯算法的newsgroup文本分类器

1、Newsgroup文档集介绍

Newsgroups最早由Lang于1995收集并在[Lang 1995]中使用。它含有20000篇左右的Usenet文档,几乎平均分配20个不同的新闻组。除了其中4.5%的文档属于两个或两个以上的新闻组以外,其余文档仅属于一个新闻组,因此它通常被作为单标注分类问题来处理。Newsgroups已经成为文本分及聚类中常用的文档集。美国MIT大学Jason Rennie对Newsgroups作了必要的处理,使得每个文档只属于一个新闻组,形成Newsgroups-18828。

2、Newsgroup文档预处理

要做文本分类首先得完成文本的预处理,预处理的主要步骤如下

STEP ONE:英文词法分析,去除数字、连字符、标点符号、特殊 字符,所有大写字母转换成小写,可以用正则表达式
String res[] = line.split("[^a-zA-Z]");
STEP TWO:去停用词,过滤对分类无价值的词
STEP THRE: 词根还原stemming,基于Porter算法
文档预处理类DataPreProcess.java如下
package com.pku.yangliu;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;

/**
* Newsgroups文档集预处理类
* @author yangliu
* @qq 772330184
* @mail yang.liu@pku.edu.cn
*/
public class DataPreProcess {

/**输入文件调用处理数据函数
* @param strDir newsgroup文件目录的绝对路径
* @throws IOException
*/
public void doProcess(String strDir) throws IOException{
File fileDir = new File(strDir);
if(!fileDir.exists()){
System.out.println("File not exist:" + strDir);
return;
}
String subStrDir = strDir.substring(strDir.lastIndexOf('/'));
String dirTarget = strDir + "/../../processedSample_includeNotSpecial"+subStrDir;
File fileTarget = new File(dirTarget);
if(!fileTarget.exists()){//注意processedSample需要先建立目录建出来,否则会报错,因为母目录不存在
fileTarget.mkdir();
}
File[] srcFiles = fileDir.listFiles();
String[] stemFileNames = new String[srcFiles.length];
for(int i = 0; i < srcFiles.length; i++){
String fileFullName = srcFiles[i].getCanonicalPath();
String fileShortName = srcFiles[i].getName();
if(!new File(fileFullName).isDirectory()){//确认子文件名不是目录如果是可以再次递归调用
System.out.println("Begin preprocess:"+fileFullName);
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.append(dirTarget + "/" + fileShortName);
createProcessFile(fileFullName, stringBuilder.toString());
stemFileNames[i] = stringBuilder.toString();
}
else {
fileFullName = fileFullName.replace("\\","/");
doProcess(fileFullName);
}
}
//下面调用stem算法
if(stemFileNames.length > 0 && stemFileNames[0] != null){
Stemmer.porterMain(stemFileNames);
}
}

/**进行文本预处理生成目标文件
* @param srcDir 源文件文件目录的绝对路径
* @param targetDir 生成的目标文件的绝对路径
* @throws IOException
*/
private static void createProcessFile(String srcDir, String targetDir) throws IOException {
// TODO Auto-generated method stub
FileReader srcFileReader = new FileReader(srcDir);
FileReader stopWordsReader = new FileReader("F:/DataMiningSample/stopwords.txt");
FileWriter targetFileWriter = new FileWriter(targetDir);
BufferedReader srcFileBR = new BufferedReader(srcFileReader);//装饰模式
BufferedReader stopWordsBR = new BufferedReader(stopWordsReader);
String line, resLine, stopWordsLine;
//用stopWordsBR够着停用词的ArrayList容器
ArrayList<String> stopWordsArray = new ArrayList<String>();
while((stopWordsLine = stopWordsBR.readLine()) != null){
if(!stopWordsLine.isEmpty()){
stopWordsArray.add(stopWordsLine);
}
}
while((line = srcFileBR.readLine()) != null){
resLine = lineProcess(line,stopWordsArray);
if(!resLine.isEmpty()){
//按行写,一行写一个单词
String[] tempStr = resLine.split(" ");//\s
for(int i = 0; i < tempStr.length; i++){
if(!tempStr[i].isEmpty()){
targetFileWriter.append(tempStr[i]+"\n");
}
}
}
}
targetFileWriter.flush();
targetFileWriter.close();
srcFileReader.close();
stopWordsReader.close();
srcFileBR.close();
stopWordsBR.close();
}

/**对每行字符串进行处理,主要是词法分析、去停用词和stemming
* @param line 待处理的一行字符串
* @param ArrayList<String> 停用词数组
* @return String 处理好的一行字符串,是由处理好的单词重新生成,以空格为分隔符
* @throws IOException
*/
private static String lineProcess(String line, ArrayList<String> stopWordsArray) throws IOException {
// TODO Auto-generated method stub
//step1 英文词法分析,去除数字、连字符、标点符号、特殊字符,所有大写字母转换成小写,可以考虑用正则表达式
String res[] = line.split("[^a-zA-Z]");
//这里要小心,防止把有单词中间有数字和连字符的单词 截断了,但是截断也没事

String resString = new String();
//step2去停用词
//step3stemming,返回后一起做
for(int i = 0; i < res.length; i++){
if(!res[i].isEmpty() && !stopWordsArray.contains(res[i].toLowerCase())){
resString += " " + res[i].toLowerCase() + " ";
}
}
return resString;
}

/**
* @param args
* @throws IOException
*/
public void BPPMain(String[] args) throws IOException {
// TODO Auto-generated method stub
DataPreProcess dataPrePro = new DataPreProcess();
dataPrePro.doProcess("F:/DataMiningSample/orginSample");

}

}

steming的porter算法可以Google,有C及JAVA的实现版本,点击下载porter算法JAVA版本

2、特征词的选取
首先统计经过预处理后在所有文档中出现不重复的单词一共有87554个,对这些词进行统计发现:

出现次数大于等于1次的词有87554个

出现次数大于等于3次的词有36456个

出现次数大于等于4次的词有30095个

特征词的选取策略:

策略一:保留所有词作为特征词 共计87554个

策略二:选取出现次数大于等于4次的词作为特征词共计30095个

特征词的选取策略:采用策略一,后面将对两种特征词选取策略的计算时间和平均准确率做对比
测试集与训练集的创建类CreateTrainAndTestSample.java如下
package com.pku.yangliu;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.SortedMap;
import java.util.TreeMap;

/**创建训练样例集合与测试样例集合
* @author yangliu
* @qq 772330184
* @mail yang.liu@pku.edu.cn
*
*/
public class CreateTrainAndTestSample {

void filterSpecialWords() throws IOException {
// TODO Auto-generated method stub
String word;
ComputeWordsVector cwv = new ComputeWordsVector();
String fileDir = "F:/DataMiningSample/processedSample_includeNotSpecial";
SortedMap<String,Double> wordMap = new TreeMap<String,Double>();
wordMap = cwv.countWords(fileDir, wordMap);
cwv.printWordMap(wordMap);//把wordMap输出到文件
File[] sampleDir = new File(fileDir).listFiles();
for(int i = 0; i < sampleDir.length; i++){
File[] sample = sampleDir[i].listFiles();
String targetDir = "F:/DataMiningSample/processedSampleOnlySpecial/"+sampleDir[i].getName();
File targetDirFile = new File(targetDir);
if(!targetDirFile.exists()){
targetDirFile.mkdir();
}
for(int j = 0;j < sample.length; j++){
String fileShortName = sample[j].getName();
if(fileShortName.contains("stemed")){
targetDir = "F:/DataMiningSample/processedSampleOnlySpecial/"+sampleDir[i].getName()+"/"+fileShortName.substring(0,5);
FileWriter tgWriter= new FileWriter(targetDir);
FileReader samReader = new FileReader(sample[j]);
BufferedReader samBR = new BufferedReader(samReader);
while((word = samBR.readLine()) != null){
if(wordMap.containsKey(word)){
tgWriter.append(word + "\n");
}
}
tgWriter.flush();
tgWriter.close();
}
}
}
}

void createTestSamples(String fileDir, double trainSamplePercent,int indexOfSample,String classifyResultFile) throws IOException {
// TODO Auto-generated method stub
String word, targetDir;
FileWriter crWriter = new FileWriter(classifyResultFile);//测试样例正确类目记录文件
File[] sampleDir = new File(fileDir).listFiles();
for(int i = 0; i < sampleDir.length; i++){
File[] sample = sampleDir[i].listFiles();
double testBeginIndex = indexOfSample*(sample.length * (1-trainSamplePercent));//测试样例的起始文件序号
double testEndIndex = (indexOfSample+1)*(sample.length * (1-trainSamplePercent));//测试样例集的结束文件序号
for(int j = 0;j < sample.length; j++){
FileReader samReader = new FileReader(sample[j]);
BufferedReader samBR = new BufferedReader(samReader);
String fileShortName = sample[j].getName();
String subFileName = fileShortName;
if(j > testBeginIndex && j< testEndIndex){//序号在规定区间内的作为测试样本,需要为测试样本生成类别-序号文件,最后加入分类的结果,一行对应一个文件,方便统计准确率
targetDir = "F:/DataMiningSample/TestSample"+indexOfSample+"/"+sampleDir[i].getName();
crWriter.append(subFileName + " " + sampleDir[i].getName()+"\n");

}
else{//其余作为训练样本
targetDir = "F:/DataMiningSample/TrainSample"+indexOfSample+"/"+sampleDir[i].getName();
}
targetDir = targetDir.replace("\\","/");
File trainSamFile = new File(targetDir);
if(!trainSamFile.exists()){
trainSamFile.mkdir();
}
targetDir += "/"+subFileName;
FileWriter tsWriter = new FileWriter(new File(targetDir));
while((word = samBR.readLine()) != null){
tsWriter.append(word + "\n");
}
tsWriter.flush();
tsWriter.close();
}
}
crWriter.flush();
crWriter.close();
}
}


3、贝叶斯算法描述及实现
根据朴素贝叶斯公式,每个测试样例属于某个类别的概率 = 所有测试样例包含特征词类条件概率P(tk|c)之积 * 先验概率P(c)
在具体计算类条件概率和先验概率时,朴素贝叶斯分类器有两种模型
(1) 多项式模型( multinomial model ) –以单词为粒度

类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+训练样本中不重复特征词总数)

先验概率P(c)=类c下的单词总数/整个训练样本的单词总数

伯努利模型(Bernoulli model) –以文件为粒度

(2) 类条件概率P(tk|c)=(类c下包含单词tk的文件数+1)/(类c下单词总数+2)

先验概率P(c)=类c下文件总数/整个训练样本的文件总数

本分类器选用多项式模型计算,根据《Introduction to Information Retrieval 》,多项式模型计算准确率更高
贝叶斯算法的实现有以下注意点:
(1) 计算概率用到了BigDecimal类实现任意精度计算

(2) 用交叉验证法做十次分类实验,对准确率取平均值

(3) 根据正确类目文件和分类结果文计算混淆矩阵并且输出

(4) Map<String,Double> cateWordsProb key为“类目_单词”, value为该类目下该单词的出现次数,避免重复计算
贝叶斯算法实现类如下 NaiveBayesianClassifier.java
package com.pku.yangliu;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.math.BigDecimal;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.Vector;

/**利用朴素贝叶斯算法对newsgroup文档集做分类,采用十组交叉测试取平均值
* 采用多项式模型,stanford信息检索导论课件上面言多项式模型比伯努利模型准确度高
* 类条件概率P(tk|c)=(类c 下单词tk 在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)
* @author yangliu
* @qq 772330184
* @mail yang.liu@pku.edu.cn
*
*/
public class NaiveBayesianClassifier {

/**用贝叶斯法对测试文档集分类
* @param trainDir 训练文档集目录
* @param testDir 测试文档集目录
* @param classifyResultFileNew 分类结果文件路径
* @throws Exception
*/
private void doProcess(String trainDir, String testDir,
String classifyResultFileNew) throws Exception {
// TODO Auto-generated method stub
Map<String,Double> cateWordsNum = new TreeMap<String,Double>();//保存训练集每个类别的总词数
Map<String,Double> cateWordsProb = new TreeMap<String,Double>();//保存训练样本每个类别中每个属性词的出现词数
cateWordsProb = getCateWordsProb(trainDir);
cateWordsNum = getCateWordsNum(trainDir);
double totalWordsNum = 0.0;//记录所有训练集的总词数
Set<Map.Entry<String,Double>> cateWordsNumSet = cateWordsNum.entrySet();
for(Iterator<Map.Entry<String,Double>> it = cateWordsNumSet.iterator(); it.hasNext();){
Map.Entry<String, Double> me = it.next();
totalWordsNum += me.getValue();
}
//下面开始读取测试样例做分类
Vector<String> testFileWords = new Vector<String>();
String word;
File[] testDirFiles = new File(testDir).listFiles();
FileWriter crWriter = new FileWriter(classifyResultFileNew);
for(int i = 0; i < testDirFiles.length; i++){
File[] testSample = testDirFiles[i].listFiles();
for(int j = 0;j < testSample.length; j++){
testFileWords.clear();
FileReader spReader = new FileReader(testSample[j]);
BufferedReader spBR = new BufferedReader(spReader);
while((word = spBR.readLine()) != null){
testFileWords.add(word);
}
//下面分别计算该测试样例属于二十个类别的概率
File[] trainDirFiles = new File(trainDir).listFiles();
BigDecimal maxP = new BigDecimal(0);
String bestCate = null;
for(int k = 0; k < trainDirFiles.length; k++){
BigDecimal p = computeCateProb(trainDirFiles[k], testFileWords, cateWordsNum, totalWordsNum, cateWordsProb);
if(k == 0){
maxP = p;
bestCate = trainDirFiles[k].getName();
continue;
}
if(p.compareTo(maxP) == 1){
maxP = p;
bestCate = trainDirFiles[k].getName();
}
}
crWriter.append(testSample[j].getName() + " " + bestCate + "\n");
crWriter.flush();
}
}
crWriter.close();
}

/**统计某类训练样本中每个单词的出现次数
* @param strDir 训练样本集目录
* @return Map<String,Double> cateWordsProb 用"类目_单词"对来索引的map,保存的val就是该类目下该单词的出现次数
* @throws IOException
*/
public Map<String,Double> getCateWordsProb(String strDir) throws IOException{
Map<String,Double> cateWordsProb = new TreeMap<String,Double>();
File sampleFile = new File(strDir);
File [] sampleDir = sampleFile.listFiles();
String word;
for(int i = 0;i < sampleDir.length; i++){
File [] sample = sampleDir[i].listFiles();
for(int j = 0; j < sample.length; j++){
FileReader samReader = new FileReader(sample[j]);
BufferedReader samBR = new BufferedReader(samReader);
while((word = samBR.readLine()) != null){
String key = sampleDir[i].getName() + "_" + word;
if(cateWordsProb.containsKey(key)){
double count = cateWordsProb.get(key) + 1.0;
cateWordsProb.put(key, count);
}
else {
cateWordsProb.put(key, 1.0);
}
}
}
}
return cateWordsProb;
}

/**计算某一个测试样本属于某个类别的概率
* @param Map<String, Double> cateWordsProb 记录每个目录中出现的单词及次数
* @param File trainFile 该类别所有的训练样本所在目录
* @param Vector<String> testFileWords 该测试样本中的所有词构成的容器
* @param double totalWordsNum 记录所有训练样本的单词总数
* @param Map<String, Double> cateWordsNum 记录每个类别的单词总数
* @return BigDecimal 返回该测试样本在该类别中的概率
* @throws Exception
* @throws IOException
*/
private BigDecimal computeCateProb(File trainFile, Vector<String> testFileWords, Map<String, Double> cateWordsNum, double totalWordsNum, Map<String, Double> cateWordsProb) throws Exception {
// TODO Auto-generated method stub
BigDecimal probability = new BigDecimal(1);
double wordNumInCate = cateWordsNum.get(trainFile.getName());
BigDecimal wordNumInCateBD = new BigDecimal(wordNumInCate);
BigDecimal totalWordsNumBD = new BigDecimal(totalWordsNum);
for(Iterator<String> it = testFileWords.iterator(); it.hasNext();){
String me = it.next();
String key = trainFile.getName()+"_"+me;
double testFileWordNumInCate;
if(cateWordsProb.containsKey(key)){
testFileWordNumInCate = cateWordsProb.get(key);
}else testFileWordNumInCate = 0.0;
BigDecimal testFileWordNumInCateBD = new BigDecimal(testFileWordNumInCate);
BigDecimal xcProb = (testFileWordNumInCateBD.add(new BigDecimal(0.0001))).divide(totalWordsNumBD.add(wordNumInCateBD),10, BigDecimal.ROUND_CEILING);
probability = probability.multiply(xcProb);
}
BigDecimal res = probability.multiply(wordNumInCateBD.divide(totalWordsNumBD,10, BigDecimal.ROUND_CEILING));
return res;
}

/**获得每个类目下的单词总数
* @param trainDir 训练文档集目录
* @return Map<String, Double> <目录名,单词总数>的map
* @throws IOException
*/
private Map<String, Double> getCateWordsNum(String trainDir) throws IOException {
// TODO Auto-generated method stub
Map<String,Double> cateWordsNum = new TreeMap<String,Double>();
File[] sampleDir = new File(trainDir).listFiles();
for(int i = 0; i < sampleDir.length; i++){
double count = 0;
File[] sample = sampleDir[i].listFiles();
for(int j = 0;j < sample.length; j++){
FileReader spReader = new FileReader(sample[j]);
BufferedReader spBR = new BufferedReader(spReader);
while(spBR.readLine() != null){
count++;
}
}
cateWordsNum.put(sampleDir[i].getName(), count);
}
return cateWordsNum;
}

/**根据正确类目文件和分类结果文件统计出准确率
* @param classifyResultFile 正确类目文件
* @param classifyResultFileNew 分类结果文件
* @return double 分类的准确率
* @throws IOException
*/
double computeAccuracy(String classifyResultFile,
String classifyResultFileNew) throws IOException {
// TODO Auto-generated method stub
Map<String,String> rightCate = new TreeMap<String,String>();
Map<String,String> resultCate = new TreeMap<String,String>();
rightCate = getMapFromResultFile(classifyResultFile);
resultCate = getMapFromResultFile(classifyResultFileNew);
Set<Map.Entry<String, String>> resCateSet = resultCate.entrySet();
double rightCount = 0.0;
for(Iterator<Map.Entry<String, String>> it = resCateSet.iterator(); it.hasNext();){
Map.Entry<String, String> me = it.next();
if(me.getValue().equals(rightCate.get(me.getKey()))){
rightCount ++;
}
}
computerConfusionMatrix(rightCate,resultCate);
return rightCount / resultCate.size();
}

/**根据正确类目文件和分类结果文计算混淆矩阵并且输出
* @param rightCate 正确类目对应map
* @param resultCate 分类结果对应map
* @return double 分类的准确率
* @throws IOException
*/
private void computerConfusionMatrix(Map<String, String> rightCate,
Map<String, String> resultCate) {
// TODO Auto-generated method stub
int[][] confusionMatrix = new int[20][20];
//首先求出类目对应的数组索引
SortedSet<String> cateNames = new TreeSet<String>();
Set<Map.Entry<String, String>> rightCateSet = rightCate.entrySet();
for(Iterator<Map.Entry<String, String>> it = rightCateSet.iterator(); it.hasNext();){
Map.Entry<String, String> me = it.next();
cateNames.add(me.getValue());
}
cateNames.add("rec.sport.baseball");//防止数少一个类目
String[] cateNamesArray = cateNames.toArray(new String[0]);
Map<String,Integer> cateNamesToIndex = new TreeMap<String,Integer>();
for(int i = 0; i < cateNamesArray.length; i++){
cateNamesToIndex.put(cateNamesArray[i],i);
}
for(Iterator<Map.Entry<String, String>> it = rightCateSet.iterator(); it.hasNext();){
Map.Entry<String, String> me = it.next();
confusionMatrix[cateNamesToIndex.get(me.getValue())][cateNamesToIndex.get(resultCate.get(me.getKey()))]++;
}
//输出混淆矩阵
double[] hangSum = new double[20];
System.out.print("    ");
for(int i = 0; i < 20; i++){
System.out.print(i + "    ");
}
System.out.println();
for(int i = 0; i < 20; i++){
System.out.print(i + "    ");
for(int j = 0; j < 20; j++){
System.out.print(confusionMatrix[i][j]+"    ");
hangSum[i] += confusionMatrix[i][j];
}
System.out.println(confusionMatrix[i][i] / hangSum[i]);
}
System.out.println();
}

/**从分类结果文件中读取map
* @param classifyResultFileNew 类目文件
* @return Map<String, String> 由<文件名,类目名>保存的map
* @throws IOException
*/
private Map<String, String> getMapFromResultFile(
String classifyResultFileNew) throws IOException {
// TODO Auto-generated method stub
File crFile = new File(classifyResultFileNew);
FileReader crReader = new FileReader(crFile);
BufferedReader crBR = new BufferedReader(crReader);
Map<String, String> res = new TreeMap<String, String>();
String[] s;
String line;
while((line = crBR.readLine()) != null){
s = line.split(" ");
res.put(s[0], s[1]);
}
return res;
}

/**
* @param args
* @throws Exception
*/
public void NaiveBayesianClassifierMain(String[] args) throws Exception {
//TODO Auto-generated method stub
//首先创建训练集和测试集
CreateTrainAndTestSample ctt = new CreateTrainAndTestSample();
NaiveBayesianClassifier nbClassifier = new NaiveBayesianClassifier();
ctt.filterSpecialWords();//根据包含非特征词的文档集生成只包含特征词的文档集到processedSampleOnlySpecial目录下
double[] accuracyOfEveryExp = new double[10];
double accuracyAvg,sum = 0;
for(int i = 0; i < 10; i++){//用交叉验证法做十次分类实验,对准确率取平均值
String TrainDir = "F:/DataMiningSample/TrainSample"+i;
String TestDir = "F:/DataMiningSample/TestSample"+i;
String classifyRightCate = "F:/DataMiningSample/classifyRightCate"+i+".txt";
String classifyResultFileNew = "F:/DataMiningSample/classifyResultNew"+i+".txt";
ctt.createTestSamples("F:/DataMiningSample/processedSampleOnlySpecial", 0.9, i,classifyRightCate);
nbClassifier.doProcess(TrainDir,TestDir,classifyResultFileNew);
accuracyOfEveryExp[i] = nbClassifier.computeAccuracy (classifyRightCate, classifyResultFileNew);
System.out.println("The accuracy for Naive Bayesian Classifier in "+i+"th Exp is :" + accuracyOfEveryExp[i]);
}
for(int i = 0; i < 10; i++){
sum += accuracyOfEveryExp[i];
}
accuracyAvg = sum / 10;
System.out.println("The average accuracy for Naive Bayesian Classifier in all Exps is :" + accuracyAvg);

}
}


4 朴素贝叶斯算法对newsgroup文档集做分类的结果

为方便计算混淆矩阵,将类目编号如下

0 alt.atheism

1 comp.graphics

2 comp.os.ms-windows.misc

3comp.sys.ibm.pc.hdwar

4comp.sys.mac.hardwar

5 comp.windows.x

6 misc.forsale

7 rec.autos

8 rec.motorcycles

9 rec.sport.baseball

10 rec.sport.hockey

11 sci.crypt

12 sci.electronics

13 sci.med

14 sci.space

15 soc.religion.christian

16 talk.politics.guns

17 talk.politics.mideast

18 talk.politics.misc

19 talk.religion.misc

贝叶斯算法分类结果-混淆矩阵表示,以交叉验证的第6次实验结果为例,分类准确率达到80.47%



程序运行硬件环境:Intel Core 2 Duo CPU T5750 2GHZ, 2G内存,实验结果如下

取所有词共87554个作为特征词:10次交叉验证实验平均准确率78.19%,用时23min,准确率范围75.65%-80.47%,第6次实验准确率超过80%

取出现次数大于等于4次的词共计30095个作为特征词: 10次交叉验证实验平均准确率77.91%,用时22min,准确率范围75.51%-80.26%,第6次实验准确率超过80%



结论:朴素贝叶斯算法不必去除出现次数很低的词,因为出现次数很低的词的IDF比较 大,去除后分类准确率下降,而计算时间并没有显著减少
5 贝叶斯算法的改进

为了进一步提高贝叶斯算法的分类准确率,可以考虑
(1) 优化特征词的选取策略
(2)改进多项式模型的类条件概率的计算公式,改进为 类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+0.001)/(类c下单词总数+训练样本中不重复特征词总数),分子当tk没有出现时,只加0.001,这样更加精确的描述的词的统计分布规律,做此改进后的混淆矩阵如下



可以看到第6次分组实验的准确率提高到84.79%,第7词分组实验的准确率达到85.24%,平均准确率由77.91%提高到了82.23%,优化效果还是很明显的
KNN算法描述及JAVA实现,和两种算法的准确率对比,见数据挖掘-基于贝叶斯算法及KNN算法的newsgroup18828文档分类器的JAVA实现(下)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐