您的位置:首页 > 移动开发 > Objective-C

DES加密和解密PHP,Java,ObjectC统一的方法

2012-03-18 15:25 465 查看
PHP的加解密函数

<?php

class DesComponent {
var $key = '12345678';

function encrypt($string) {

$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
$iv=null;
foreach ($ivArray as $element)
$iv.=CHR($element);

$size = mcrypt_get_block_size ( MCRYPT_DES, MCRYPT_MODE_CBC );
$string = $this->pkcs5Pad ( $string, $size );

$data =  mcrypt_encrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);

$data = base64_encode($data);
return $data;
}

function decrypt($string) {

$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
$iv=null;
foreach ($ivArray as $element)
$iv.=CHR($element);

$string = base64_decode($string);
//echo("****");
//echo($string);
//echo("****");
$result =  mcrypt_decrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);
$result = $this->pkcs5Unpad( $result );

return $result;
}

function pkcs5Pad($text, $blocksize)
{
$pad = $blocksize - (strlen ( $text ) % $blocksize);
return $text . str_repeat ( chr ( $pad ), $pad );
}

function pkcs5Unpad($text)
{
$pad = ord ( $text {strlen ( $text ) - 1} );
if ($pad > strlen ( $text ))
return false;
if (strspn ( $text, chr ( $pad ), strlen ( $text ) - $pad ) != $pad)
return false;
return substr ( $text, 0, - 1 * $pad );
}

}

$des = new DesComponent();
echo ($des->encrypt("19760519"));
echo "<br />";

//die($des->decrypt("zLVdpYUM0qw="));
//die($des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="));

$t2 =$des->decrypt("zLVdpYUM0qw=");
echo $t2;
echo "--";
echo strlen($t2);
echo is_utf8($t2);

echo "<br />";
$t3 = mb_convert_encoding($t2,"GB2312", "utf-8");
echo $t3;
echo "--";
echo strlen($t3);
echo is_utf8($t3);

echo "<br />";

$t1 =$des->decrypt("zLVdpYUM0qzEsNshEEI6Cg==");
echo $t1;
echo "--";
echo strlen($t1);
echo is_utf8($t1);

echo "<br />";
$t3 = mb_convert_encoding($t1, "utf-8","GB2312");
echo $t3;
echo "--";
echo strlen($t3);
echo is_utf8($t3);

function is_utf8($string) {
return preg_match('%^(?:
[\x09\x0A\x0D\x20-\x7E] # ASCII
| [\xC2-\xDF][\x80-\xBF] # non-overlong 2-byte
| \xE0[\xA0-\xBF][\x80-\xBF] # excluding overlongs
| [\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} # straight 3-byte
| \xED[\x80-\x9F][\x80-\xBF] # excluding surrogates
| \xF0[\x90-\xBF][\x80-\xBF]{2} # planes 1-3
| [\xF1-\xF3][\x80-\xBF]{3} # planes 4-15
| \xF4[\x80-\x8F][\x80-\xBF]{2} # plane 16
)*$%xs', $string);
}
?>


Java的加解密函数

package ghj1976.Demo;

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0 *
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

import java.io.UnsupportedEncodingException;

/**
* Utilities for encoding and decoding the Base64 representation of
* binary data.  See RFCs <a
* href="http://www.ietf.org/rfc/rfc2045.txt">2045</a> and <a
* href="http://www.ietf.org/rfc/rfc3548.txt">3548</a>.
*/
public class Base64 {
/**
* Default values for encoder/decoder flags.
*/
public static final int DEFAULT = 0;

/**
* Encoder flag bit to omit the padding '=' characters at the end
* of the output (if any).
*/
public static final int NO_PADDING = 1;

/**
* Encoder flag bit to omit all line terminators (i.e., the output
* will be on one long line).
*/
public static final int NO_WRAP = 2;

/**
* Encoder flag bit to indicate lines should be terminated with a
* CRLF pair instead of just an LF.  Has no effect if {@code
* NO_WRAP} is specified as well.
*/
public static final int CRLF = 4;

/**
* Encoder/decoder flag bit to indicate using the "URL and
* filename safe" variant of Base64 (see RFC 3548 section 4) where
* {@code -} and {@code _} are used in place of {@code +} and
* {@code /}.
*/
public static final int URL_SAFE = 8;

/**
* Flag to pass to {@link Base64OutputStream} to indicate that it
* should not close the output stream it is wrapping when it
* itself is closed.
*/
public static final int NO_CLOSE = 16;

//  --------------------------------------------------------
//  shared code
//  --------------------------------------------------------

/* package */ static abstract class Coder {
public byte[] output;
public int op;

/**
* Encode/decode another block of input data.  this.output is
* provided by the caller, and must be big enough to hold all
* the coded data.  On exit, this.opwill be set to the length
* of the coded data.
*
* @param finish true if this is the final call to process for
*        this object.  Will finalize the coder state and
*        include any final bytes in the output.
*
* @return true if the input so far is good; false if some
*         error has been detected in the input stream..
*/
public abstract boolean process(byte[] input, int offset, int len, boolean finish);

/**
* @return the maximum number of bytes a call to process()
* could produce for the given number of input bytes.  This may
* be an overestimate.
*/
public abstract int maxOutputSize(int len);
}

//  --------------------------------------------------------
//  decoding
//  --------------------------------------------------------

/**
* Decode the Base64-encoded data in input and return the data in
* a new byte array.
*
* <p>The padding '=' characters at the end are considered optional, but
* if any are present, there must be the correct number of them.
*
* @param str    the input String to decode, which is converted to
*               bytes using the default charset
* @param flags  controls certain features of the decoded output.
*               Pass {@code DEFAULT} to decode standard Base64.
*
* @throws IllegalArgumentException if the input contains
* incorrect padding
*/
public static byte[] decode(String str, int flags) {
return decode(str.getBytes(), flags);
}

/**
* Decode the Base64-encoded data in input and return the data in
* a new byte array.
*
* <p>The padding '=' characters at the end are considered optional, but
* if any are present, there must be the correct number of them.
*
* @param input the input array to decode
* @param flags  controls certain features of the decoded output.
*               Pass {@code DEFAULT} to decode standard Base64.
*
* @throws IllegalArgumentException if the input contains
* incorrect padding
*/
public static byte[] decode(byte[] input, int flags) {
return decode(input, 0, input.length, flags);
}

/**
* Decode the Base64-encoded data in input and return the data in
* a new byte array.
*
* <p>The padding '=' characters at the end are considered optional, but
* if any are present, there must be the correct number of them.
*
* @param input  the data to decode
* @param offset the position within the input array at which to start
* @param len    the number of bytes of input to decode
* @param flags  controls certain features of the decoded output.
*               Pass {@code DEFAULT} to decode standard Base64.
*
* @throws IllegalArgumentException if the input contains
* incorrect padding
*/
public static byte[] decode(byte[] input, int offset, int len, int flags) {
// Allocate space for the most data the input could represent.
// (It could contain less if it contains whitespace, etc.)
Decoder decoder = new Decoder(flags, new byte[len*3/4]);

if (!decoder.process(input, offset, len, true)) {
throw new IllegalArgumentException("bad base-64");
}

// Maybe we got lucky and allocated exactly enough output space.
if (decoder.op == decoder.output.length) {
return decoder.output;
}

// Need to shorten the array, so allocate a new one of the
// right size and copy.
byte[] temp = new byte[decoder.op];
System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
return temp;
}

/* package */ static class Decoder extends Coder {
/**
* Lookup table for turning bytes into their position in the
* Base64 alphabet.
*/
private static final int DECODE[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
-1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};

/**
* Decode lookup table for the "web safe" variant (RFC 3548
* sec. 4) where - and _ replace + and /.
*/
private static final int DECODE_WEBSAFE[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
-1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};

/** Non-data values in the DECODE arrays. */
private static final int SKIP = -1;
private static final int EQUALS = -2;

/**
* States 0-3 are reading through the next input tuple.
* State 4 is having read one '=' and expecting exactly
* one more.
* State 5 is expecting no more data or padding characters
* in the input.
* State 6 is the error state; an error has been detected
* in the input and no future input can "fix" it.
*/
private int state;   // state number (0 to 6)
private int value;

final private int[] alphabet;

public Decoder(int flags, byte[] output) {
this.output = output;

alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
state = 0;
value = 0;
}

/**
* @return an overestimate for the number of bytes {@code
* len} bytes could decode to.
*/
public int maxOutputSize(int len) {
return len * 3/4 + 10;
}

/**
* Decode another block of input data.
*
* @return true if the state machine is still healthy.  false if
*         bad base-64 data has been detected in the input stream.
*/
public boolean process(byte[] input, int offset, int len, boolean finish) {
if (this.state == 6) return false;

int p = offset;
len += offset;

// Using local variables makes the decoder about 12%
// faster than if we manipulate the member variables in
// the loop.  (Even alphabet makes a measurable
// difference, which is somewhat surprising to me since
// the member variable is final.)
int state = this.state;
int value = this.value;
int op = 0;
final byte[] output = this.output;
final int[] alphabet = this.alphabet;

while (p < len) {
// Try the fast path:  we're starting a new tuple and the
// next four bytes of the input stream are all data
// bytes.  This corresponds to going through states
// 0-1-2-3-0.  We expect to use this method for most of
// the data.
//
// If any of the next four bytes of input are non-data
// (whitespace, etc.), value will end up negative.  (All
// the non-data values in decode are small negative
// numbers, so shifting any of them up and or'ing them
// together will result in a value with its top bit set.)
//
// You can remove this whole block and the output should
// be the same, just slower.
if (state == 0) {
while (p+4 <= len &&
(value = ((alphabet[input[p] & 0xff] << 18) |
(alphabet[input[p+1] & 0xff] << 12) |
(alphabet[input[p+2] & 0xff] << 6) |
(alphabet[input[p+3] & 0xff]))) >= 0) {
output[op+2] = (byte) value;
output[op+1] = (byte) (value >> 8);
output[op] = (byte) (value >> 16);
op += 3;
p += 4;
}
if (p >= len) break;
}

// The fast path isn't available -- either we've read a
// partial tuple, or the next four input bytes aren't all
// data, or whatever.  Fall back to the slower state
// machine implementation.

int d = alphabet[input[p++] & 0xff];

switch (state) {
case 0:
if (d >= 0) {
value = d;
++state;
} else if (d != SKIP) {
this.state = 6;
return false;
}
break;

case 1:
if (d >= 0) {
value = (value << 6) | d;
++state;
} else if (d != SKIP) {
this.state = 6;
return false;
}
break;

case 2:
if (d >= 0) {
value = (value << 6) | d;
++state;
} else if (d == EQUALS) {
// Emit the last (partial) output tuple;
// expect exactly one more padding character.
output[op++] = (byte) (value >> 4);
state = 4;
} else if (d != SKIP) {
this.state = 6;
return false;
}
break;

case 3:
if (d >= 0) {
// Emit the output triple and return to state 0.
value = (value << 6) | d;
output[op+2] = (byte) value;
output[op+1] = (byte) (value >> 8);
output[op] = (byte) (value >> 16);
op += 3;
state = 0;
} else if (d == EQUALS) {
// Emit the last (partial) output tuple;
// expect no further data or padding characters.
output[op+1] = (byte) (value >> 2);
output[op] = (byte) (value >> 10);
op += 2;
state = 5;
} else if (d != SKIP) {
this.state = 6;
return false;
}
break;

case 4:
if (d == EQUALS) {
++state;
} else if (d != SKIP) {
this.state = 6;
return false;
}
break;

case 5:
if (d != SKIP) {
this.state = 6;
return false;
}
break;
}
}

if (!finish) {
// We're out of input, but a future call could provide
// more.
this.state = state;
this.value = value;
this.op = op;
return true;
}

// Done reading input.  Now figure out where we are left in
// the state machine and finish up.

switch (state) {
case 0:
// Output length is a multiple of three.  Fine.
break;
case 1:
// Read one extra input byte, which isn't enough to
// make another output byte.  Illegal.
this.state = 6;
return false;
case 2:
// Read two extra input bytes, enough to emit 1 more
// output byte.  Fine.
output[op++] = (byte) (value >> 4);
break;
case 3:
// Read three extra input bytes, enough to emit 2 more
// output bytes.  Fine.
output[op++] = (byte) (value >> 10);
output[op++] = (byte) (value >> 2);
break;
case 4:
// Read one padding '=' when we expected 2.  Illegal.
this.state = 6;
return false;
case 5:
// Read all the padding '='s we expected and no more.
// Fine.
break;
}

this.state = state;
this.op = op;
return true;
}
}

//  --------------------------------------------------------
//  encoding
//  --------------------------------------------------------

/**
* Base64-encode the given data and return a newly allocated
* String with the result.
*
* @param input  the data to encode
* @param flags  controls certain features of the encoded output.
*               Passing {@code DEFAULT} results in output that
*               adheres to RFC 2045.
*/
public static String encodeToString(byte[] input, int flags) {
try {
return new String(encode(input, flags), "US-ASCII");
} catch (UnsupportedEncodingException e) {
// US-ASCII is guaranteed to be available.
throw new AssertionError(e);
}
}

/**
* Base64-encode the given data and return a newly allocated
* String with the result.
*
* @param input  the data to encode
* @param offset the position within the input array at which to
*               start
* @param len    the number of bytes of input to encode
* @param flags  controls certain features of the encoded output.
*               Passing {@code DEFAULT} results in output that
*               adheres to RFC 2045.
*/
public static String encodeToString(byte[] input, int offset, int len, int flags) {
try {
return new String(encode(input, offset, len, flags), "US-ASCII");
} catch (UnsupportedEncodingException e) {
// US-ASCII is guaranteed to be available.
throw new AssertionError(e);
}
}

/**
* Base64-encode the given data and return a newly allocated
* byte[] with the result.
*
* @param input  the data to encode
* @param flags  controls certain features of the encoded output.
*               Passing {@code DEFAULT} results in output that
*               adheres to RFC 2045.
*/
public static byte[] encode(byte[] input, int flags) {
return encode(input, 0, input.length, flags);
}

/**
* Base64-encode the given data and return a newly allocated
* byte[] with the result.
*
* @param input  the data to encode
* @param offset the position within the input array at which to
*               start
* @param len    the number of bytes of input to encode
* @param flags  controls certain features of the encoded output.
*               Passing {@code DEFAULT} results in output that
*               adheres to RFC 2045.
*/
public static byte[] encode(byte[] input, int offset, int len, int flags) {
Encoder encoder = new Encoder(flags, null);

// Compute the exact length of the array we will produce.
int output_len = len / 3 * 4;

// Account for the tail of the data and the padding bytes, if any.
if (encoder.do_padding) {
if (len % 3 > 0) {
output_len += 4;
}
} else {
switch (len % 3) {
case 0: break;
case 1: output_len += 2; break;
case 2: output_len += 3; break;
}
}

// Account for the newlines, if any.
if (encoder.do_newline && len > 0) {
output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *
(encoder.do_cr ? 2 : 1);
}

encoder.output = new byte[output_len];
encoder.process(input, offset, len, true);

assert encoder.op == output_len;

return encoder.output;
}

/* package */ static class Encoder extends Coder {
/**
* Emit a new line every this many output tuples.  Corresponds to
* a 76-character line length (the maximum allowable according to
* <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
*/
public static final int LINE_GROUPS = 19;

/**
* Lookup table for turning Base64 alphabet positions (6 bits)
* into output bytes.
*/
private static final byte ENCODE[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',
};

/**
* Lookup table for turning Base64 alphabet positions (6 bits)
* into output bytes.
*/
private static final byte ENCODE_WEBSAFE[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',
};

final private byte[] tail;
/* package */ int tailLen;
private int count;

final public boolean do_padding;
final public boolean do_newline;
final public boolean do_cr;
final private byte[] alphabet;

public Encoder(int flags, byte[] output) {
this.output = output;

do_padding = (flags & NO_PADDING) == 0;
do_newline = (flags & NO_WRAP) == 0;
do_cr = (flags & CRLF) != 0;
alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;

tail = new byte[2];
tailLen = 0;

count = do_newline ? LINE_GROUPS : -1;
}

/**
* @return an overestimate for the number of bytes {@code
* len} bytes could encode to.
*/
public int maxOutputSize(int len) {
return len * 8/5 + 10;
}

public boolean process(byte[] input, int offset, int len, boolean finish) {
// Using local variables makes the encoder about 9% faster.
final byte[] alphabet = this.alphabet;
final byte[] output = this.output;
int op = 0;
int count = this.count;

int p = offset;
len += offset;
int v = -1;

// First we need to concatenate the tail of the previous call
// with any input bytes available now and see if we can empty
// the tail.

switch (tailLen) {
case 0:
// There was no tail.
break;

case 1:
if (p+2 <= len) {
// A 1-byte tail with at least 2 bytes of
// input available now.
v = ((tail[0] & 0xff) << 16) |
((input[p++] & 0xff) << 8) |
(input[p++] & 0xff);
tailLen = 0;
};
break;

case 2:
if (p+1 <= len) {
// A 2-byte tail with at least 1 byte of input.
v = ((tail[0] & 0xff) << 16) |
((tail[1] & 0xff) << 8) |
(input[p++] & 0xff);
tailLen = 0;
}
break;
}

if (v != -1) {
output[op++] = alphabet[(v >> 18) & 0x3f];
output[op++] = alphabet[(v >> 12) & 0x3f];
output[op++] = alphabet[(v >> 6) & 0x3f];
output[op++] = alphabet[v & 0x3f];
if (--count == 0) {
if (do_cr) output[op++] = '\r';
output[op++] = '\n';
count = LINE_GROUPS;
}
}

// At this point either there is no tail, or there are fewer
// than 3 bytes of input available.

// The main loop, turning 3 input bytes into 4 output bytes on
// each iteration.
while (p+3 <= len) {
v = ((input[p] & 0xff) << 16) |
((input[p+1] & 0xff) << 8) |
(input[p+2] & 0xff);
output[op] = alphabet[(v >> 18) & 0x3f];
output[op+1] = alphabet[(v >> 12) & 0x3f];
output[op+2] = alphabet[(v >> 6) & 0x3f];
output[op+3] = alphabet[v & 0x3f];
p += 3;
op += 4;
if (--count == 0) {
if (do_cr) output[op++] = '\r';
output[op++] = '\n';
count = LINE_GROUPS;
}
}

if (finish) {
// Finish up the tail of the input.  Note that we need to
// consume any bytes in tail before any bytes
// remaining in input; there should be at most two bytes
// total.

if (p-tailLen == len-1) {
int t = 0;
v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
tailLen -= t;
output[op++] = alphabet[(v >> 6) & 0x3f];
output[op++] = alphabet[v & 0x3f];
if (do_padding) {
output[op++] = '=';
output[op++] = '=';
}
if (do_newline) {
if (do_cr) output[op++] = '\r';
output[op++] = '\n';
}
} else if (p-tailLen == len-2) {
int t = 0;
v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |
(((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
tailLen -= t;
output[op++] = alphabet[(v >> 12) & 0x3f];
output[op++] = alphabet[(v >> 6) & 0x3f];
output[op++] = alphabet[v & 0x3f];
if (do_padding) {
output[op++] = '=';
}
if (do_newline) {
if (do_cr) output[op++] = '\r';
output[op++] = '\n';
}
} else if (do_newline && op > 0 && count != LINE_GROUPS) {
if (do_cr) output[op++] = '\r';
output[op++] = '\n';
}

assert tailLen == 0;
assert p == len;
} else {
// Save the leftovers in tail to be consumed on the next
// call to encodeInternal.

if (p == len-1) {
tail[tailLen++] = input[p];
} else if (p == len-2) {
tail[tailLen++] = input[p];
tail[tailLen++] = input[p+1];
}
}

this.op = op;
this.count = count;

return true;
}
}

private Base64() { }   // don't instantiate
}


package ghj1976.Demo;

import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESKeySpec;
import javax.crypto.spec.IvParameterSpec;

public class DES {
private static String DESKey = "12345678"; // 字节数必须是8的倍数
private static byte[] iv1 = {(byte)0x12, (byte)0x34, (byte)0x56, (byte)0x78, (byte)0x90, (byte)0xAB, (byte)0xCD, (byte)0xEF};
public static void main(String[] args) {
System.out.print("xyz");
DES des = new DES();
System.out.print(des.encrypt("19760519"));
}
public byte[] desEncrypt(byte[] plainText) throws Exception
{
//	        SecureRandom sr = new SecureRandom();
//	        sr.setSeed(iv);

//	    	 IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));
IvParameterSpec iv = new IvParameterSpec(iv1);

DESKeySpec dks = new DESKeySpec(DESKey.getBytes());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
SecretKey key = keyFactory.generateSecret(dks);
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte data[] = plainText;
byte encryptedData[] = cipher.doFinal(data);
return encryptedData;
}

public String encrypt(String input)
{
String result = "input";
try {
result = base64Encode(desEncrypt(input.getBytes()));
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return result;
}

public  String base64Encode(byte[] s)
{
if (s == null)
return null;
return Base64.encodeToString(s, Base64.DEFAULT);

}
}


Object c 的加解密函数

//
//  Utility.h
//  TheDealersForum
//
//  Created by Hailong Zhang on 5/3/11.
//  Copyright 2011 Personal. All rights reserved.
//

#import <Foundation/Foundation.h>
#import <CommonCrypto/CommonDigest.h>
#import <CommonCrypto/CommonCryptor.h>

@interface Utility : NSObject {

}
+ (NSString *) udid;
+ (NSString *) md5:(NSString *)str;
+ (NSString *) doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt;
+ (NSString *) encryptStr:(NSString *) str;
+ (NSString *) decryptStr:(NSString	*) str;

#pragma mark Based64
+ (NSString *) encodeBase64WithString:(NSString *)strData;
+ (NSString *) encodeBase64WithData:(NSData *)objData;
+ (NSData *) decodeBase64WithString:(NSString *)strBase64;

@end


//
//  Utility.m
//  TheDealersForum
//
//  Created by Hailong Zhang on 5/3/11.
//  Copyright 2011 Personal. All rights reserved.
//

#import "Utility.h"
static NSString *_key = @"12345678";

static const char _base64EncodingTable[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const short _base64DecodingTable[256] = {
-2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -1, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, -2, -2, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, -2, -2, -2,
-2,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, -2,
-2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2
};

@implementation Utility
+ (NSString *) udid
{
return [Utility encryptStr:[[UIDevice currentDevice] uniqueIdentifier]];
}
+ (NSString *) md5:(NSString *)str

{

const char *cStr = [str UTF8String];

unsigned char result[CC_MD5_DIGEST_LENGTH];

CC_MD5( cStr, strlen(cStr), result );

return [NSString

stringWithFormat: @"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",

result[0], result[1],

result[2], result[3],

result[4], result[5],

result[6], result[7],

result[8], result[9],

result[10], result[11],

result[12], result[13],

result[14], result[15]

];

}
+ (NSString *) encryptStr:(NSString *) str
{
return [Utility doCipher:str key:_key context:kCCEncrypt];
}
+ (NSString *) decryptStr:(NSString	*) str
{
return [Utility doCipher:str key:_key context:kCCDecrypt];
}
+ (NSString *)doCipher:(NSString *)sTextIn key:(NSString *)sKey
context:(CCOperation)encryptOrDecrypt {
NSStringEncoding EnC = NSUTF8StringEncoding;

NSMutableData * dTextIn;
if (encryptOrDecrypt == kCCDecrypt) {
dTextIn = [[Utility decodeBase64WithString:sTextIn] mutableCopy];
}
else{
dTextIn = [[sTextIn dataUsingEncoding: EnC] mutableCopy];
}
NSMutableData * dKey = [[sKey dataUsingEncoding:EnC] mutableCopy];
[dKey setLength:kCCBlockSizeDES];
uint8_t *bufferPtr1 = NULL;
size_t bufferPtrSize1 = 0;
size_t movedBytes1 = 0;
//uint8_t iv[kCCBlockSizeDES];
//memset((void *) iv, 0x0, (size_t) sizeof(iv));
Byte iv[] = {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF};
bufferPtrSize1 = ([sTextIn length] + kCCKeySizeDES) & ~(kCCKeySizeDES -1);
bufferPtr1 = malloc(bufferPtrSize1 * sizeof(uint8_t));
memset((void *)bufferPtr1, 0x00, bufferPtrSize1);
CCCrypt(encryptOrDecrypt, // CCOperation op
kCCAlgorithmDES, // CCAlgorithm alg
kCCOptionPKCS7Padding, // CCOptions options
[dKey bytes], // const void *key
[dKey length], // size_t keyLength
iv, // const void *iv
[dTextIn bytes], // const void *dataIn
[dTextIn length],  // size_t dataInLength
(void *)bufferPtr1, // void *dataOut
bufferPtrSize1,     // size_t dataOutAvailable
&movedBytes1);      // size_t *dataOutMoved

NSString * sResult;
if (encryptOrDecrypt == kCCDecrypt){
sResult = [[[ NSString alloc] initWithData:[NSData dataWithBytes:bufferPtr1
length:movedBytes1] encoding:EnC] autorelease];
}
else {
NSData *dResult = [NSData dataWithBytes:bufferPtr1 length:movedBytes1];
sResult = [Utility encodeBase64WithData:dResult];
}
return sResult;
}

+ (NSString *)encodeBase64WithString:(NSString *)strData {
return [Utility encodeBase64WithData:[strData dataUsingEncoding:NSUTF8StringEncoding]];
}

+ (NSString *)encodeBase64WithData:(NSData *)objData {
const unsigned char * objRawData = [objData bytes];
char * objPointer;
char * strResult;

// Get the Raw Data length and ensure we actually have data
int intLength = [objData length];
if (intLength == 0) return nil;

// Setup the String-based Result placeholder and pointer within that placeholder
strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
objPointer = strResult;

// Iterate through everything
while (intLength > 2) { // keep going until we have less than 24 bits
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];

// we just handled 3 octets (24 bits) of data
objRawData += 3;
intLength -= 3;
}

// now deal with the tail end of things
if (intLength != 0) {
*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
if (intLength > 1) {
*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
*objPointer++ = '=';
} else {
*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
*objPointer++ = '=';
*objPointer++ = '=';
}
}

// Terminate the string-based result
*objPointer = '\0';

// Return the results as an NSString object
return [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
}

+ (NSData *)decodeBase64WithString:(NSString *)strBase64 {
const char * objPointer = [strBase64 cStringUsingEncoding:NSASCIIStringEncoding];
int intLength = strlen(objPointer);
int intCurrent;
int i = 0, j = 0, k;

unsigned char * objResult;
objResult = calloc(intLength, sizeof(char));

// Run through the whole string, converting as we go
while ( ((intCurrent = *objPointer++) != '\0') && (intLength-- > 0) ) {
if (intCurrent == '=') {
if (*objPointer != '=' && ((i % 4) == 1)) {// || (intLength > 0)) {
// the padding character is invalid at this point -- so this entire string is invalid
free(objResult);
return nil;
}
continue;
}

intCurrent = _base64DecodingTable[intCurrent];
if (intCurrent == -1) {
// we're at a whitespace -- simply skip over
continue;
} else if (intCurrent == -2) {
// we're at an invalid character
free(objResult);
return nil;
}

switch (i % 4) {
case 0:
objResult[j] = intCurrent << 2;
break;

case 1:
objResult[j++] |= intCurrent >> 4;
objResult[j] = (intCurrent & 0x0f) << 4;
break;

case 2:
objResult[j++] |= intCurrent >>2;
objResult[j] = (intCurrent & 0x03) << 6;
break;

case 3:
objResult[j++] |= intCurrent;
break;
}
i++;
}

// mop things up if we ended on a boundary
k = j;
if (intCurrent == '=') {
switch (i % 4) {
case 1:
// Invalid state
free(objResult);
return nil;

case 2:
k++;
// flow through
case 3:
objResult[k] = 0;
}
}

// Cleanup and setup the return NSData
NSData * objData = [[[NSData alloc] initWithBytes:objResult length:j] autorelease];
free(objResult);
return objData;
}
@end
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: