您的位置:首页 > 运维架构 > Linux

详解Linux2.6内核中基于platform机制的驱动模型

2012-01-09 16:48 423 查看
(本原创文章发表于Sailor_forever 的个人blog,未经本人许可,不得用于商业用途。任何个人、媒体、其他网站不得私自抄袭;网络媒体转载请注明出处,增加原文链接,否则属于侵权行为。如 有任何问题,请留言或者发邮件给sailing_9806#163.com)

http://blog.csdn.net/sailor_8318/archive/2010/01/29/5267698.aspx

【摘要】本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型。首先介绍了Platform总线的基本概念,接着介绍了platform device和platform driver的定义和加载过程,分析了其与基类device 和driver的派生关系及在此过程中面向对象的设计思想。最后以ARM S3C2440中I2C控制器为例介绍了基于platform总线的驱动开发流程。

【关键字】platform_bus, platform_device, resource , platform_driver, file_operations

目录

1 何谓platform bus? 2

2 device和platform_device 3

3 device_register和platform_device_register 5

4 device_driver和platform driver 8

5 driver_register 和platform_driver_register 10

6 bus、device及driver三者之间的关系 17

7 哪些适用于plarform驱动? 18

8 基于platform总线的驱动开发流程 18

8.1 初始化platform_bus 19

8.2 定义platform_device 22

8.3 注册platform_device 22

8.4 定义platform_driver 28

8.5 注册platform_driver 29

8.6 操作设备 32

1 何谓platform bus?

Linux系统中许多部分对设备是如何链接的并不感兴趣,但是他们需要知道哪些类型的设备是可以使用的。设备模型提供了一种机制来对设备进行分类,在更高的功能层面上描述这些设备,并使得这些设备对用户空间可见。因此从2.6内核开始引入了设备模型。

总线是处理器和一个或多个设备之间的通道,在设备模型中, 所有的设备都通过总线相连。总线可以相互插入。设备模型展示了总线和它们所控制的设备之间的实际连接。

Platform总线是2.6 kernel中最近引入的一种虚拟总线,主要用来管理CPU的片上资源,具有更好的移植性,因此在2.6 kernel中,很多驱动都用platform改写了。

platform_bus_type的定义如下:
http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L609

609struct bus_type platform_bus_type = {

610 .name = "platform",

611 .dev_attrs = platform_dev_attrs,

612 .match = platform_match,

613 .uevent = platform_uevent,

614 .suspend = platform_suspend,

615 .suspend_late = platform_suspend_late,

616 .resume_early = platform_resume_early,

617 .resume = platform_resume,

618};

619EXPORT_SYMBOL_GPL(platform_bus_type);
http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L55
55struct bus_type {

56 const char *name;

57 struct bus_attribute *bus_attrs;

58 struct device_attribute *dev_attrs;

59 struct driver_attribute *drv_attrs;

60

61 int (*match)(struct device *dev, struct device_driver *drv);

62 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);

63 int (*probe)(struct device *dev);

64 int (*remove)(struct device *dev);

65 void (*shutdown)(struct device *dev);

66

67 int (*suspend)(struct device *dev, pm_message_t state);

68 int (*suspend_late)(struct device *dev, pm_message_t state);

69 int (*resume_early)(struct device *dev);

70 int (*resume)(struct device *dev);

71

72 struct bus_type_private *p;

73};

总线名称是"platform",其只是bus_type的一种,定义了总线的属性,同时platform_bus_type还有相关操作方法,如挂起、中止、匹配及hotplug事件等。

总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver,由match操作方法进行匹配。



Bus、driver及devices的连接关系

2 device和platform_device

Plarform device会有一个名字用于driver binding(在注册driver的时候会查找driver的目标设备的bus位置,这个过程称为driver binding),另外IRQ以及地址空间等资源也要给出 。

platform_device结构体用来描述设备的名称、资源信息等。该结构被定义在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L16中,定义原型如下:

16struct platform_device {

17 const char * name; //定义平台设备的名称,此处设备的命名应和相应驱动程序命名一致

18 int id;

19 struct device dev;

20 u32 num_resources;

21 struct resource * resource; //定义平台设备的资源

22};

在这个结构里封装了struct device及struct resource。可知:platform_device由device派生而来,是一种特殊的device。

下面来看一下platform_device结构体中最重要的一个成员struct resource * resource。struct resource被定义在http://lxr.linux.no/#linux+v2.6.25/include/linux/ioport.h#L18中,定义原型如下:

14/*

15 * Resources are tree-like, allowing

16 * nesting etc..

17 */

18struct resource {

19 resource_size_t start; //定义资源的起始地址

20 resource_size_t end; //定义资源的结束地址

21 const char *name; //定义资源的名称

22 unsigned long flags; 定义资源的类型,比如MEM,IO,IRQ,DMA类型

23 struct resource *parent, *sibling, *child;

24};

这个结构表示设备所拥有的资源,即I/O端口、I/O映射内存、中断及DMA等。这里的地址指的是物理地址。

另外还需要注意platform_device中的device结构,它详细描述了设备的情况,其为所有设备的基类,定义如下:
http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L422
422struct device {

423 struct klist klist_children;

424 struct klist_node knode_parent; /* node in sibling list */

425 struct klist_node knode_driver;

426 struct klist_node knode_bus;

427 struct device *parent;

428

429 struct kobject kobj;

430 char bus_id[BUS_ID_SIZE]; /* position on parent bus */

431 struct device_type *type;

432 unsigned is_registered:1;

433 unsigned uevent_suppress:1;

434

435 struct semaphore sem; /* semaphore to synchronize calls to

436 * its driver.

437 */

438

439 struct bus_type *bus; /* type of bus device is on */

440 struct device_driver *driver; /* which driver has allocated this

441 device */

442 void *driver_data; /* data private to the driver */

443 void *platform_data; /* Platform specific data, device

444 core doesn't touch it */

445 struct dev_pm_info power;

446

447#ifdef CONFIG_NUMA

448 int numa_node; /* NUMA node this device is close to */

449#endif

450 u64 *dma_mask; /* dma mask (if dma'able device) */

451 u64 coherent_dma_mask;/* Like dma_mask, but for

452 alloc_coherent mappings as

453 not all hardware supports

454 64 bit addresses for consistent

455 allocations such descriptors. */

456

457 struct device_dma_parameters *dma_parms;

458

459 struct list_head dma_pools; /* dma pools (if dma'ble) */

460

461 struct dma_coherent_mem *dma_mem; /* internal for coherent mem

462 override */

463 /* arch specific additions */

464 struct dev_archdata archdata;

465

466 spinlock_t devres_lock;

467 struct list_head devres_head;

468

469 /* class_device migration path */

470 struct list_head node;

471 struct class *class;

472 dev_t devt; /* dev_t, creates the sysfs "dev" */

473 struct attribute_group **groups; /* optional groups */

474

475 void (*release)(struct device *dev);

476};

477

3 device_register和platform_device_register
http://lxr.linux.no/#linux+v2.6.25/drivers/base/core.c#L881
870/**

871 * device_register - register a device with the system.

872 * @dev: pointer to the device structure

873 *

874 * This happens in two clean steps - initialize the device

875 * and add it to the system. The two steps can be called

876 * separately, but this is the easiest and most common.

877 * I.e. you should only call the two helpers separately if

878 * have a clearly defined need to use and refcount the device

879 * before it is added to the hierarchy.

880 */

881int device_register(struct device *dev)

882{

883 device_initialize(dev);

884 return device_add(dev);

885}

初始化一个设备,然后加入到系统中。
http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L325
316/**

317 * platform_device_register - add a platform-level device

318 * @pdev: platform device we're adding

319 */

320int platform_device_register(struct platform_device *pdev)

321{

322 device_initialize(&pdev->dev);

323 return platform_device_add(pdev);

324}

325EXPORT_SYMBOL_GPL(platform_device_register);

我们看到注册一个platform device分为了两部分,初始化这个platform_device,然后将此platform_device添加到platform总线中。输入参数platform_device可以是静态的全局设备。

另外一种机制就是动态申请platform_device_alloc一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。

无论哪一种platform_device,最终都将通过platform_device_add这册到platform总线上。

229/**

230 * platform_device_add - add a platform device to device hierarchy

231 * @pdev: platform device we're adding

232 *

233 * This is part 2 of platform_device_register(), though may be called

234 * separately _iff_ pdev was allocated by platform_device_alloc().

235 */

236int platform_device_add(struct platform_device *pdev)

237{

238 int i, ret = 0;

239

240 if (!pdev)

241 return -EINVAL;

242

初始化设备的parent为platform_bus,初始化驱备的总线为platform_bus_type。

243 if (!pdev->dev.parent)

244 pdev->dev.parent = &platform_bus;

245

246 pdev->dev.bus = &platform_bus_type;

247

/*++++++++++++++

The platform_device.dev.bus_id is the canonical name for the devices.

It's built from two components:

* platform_device.name ... which is also used to for driver matching.

* platform_device.id ... the device instance number, or else "-1"

to indicate there's only one.

These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and

"serial/3" indicates bus_id "serial.3"; both would use the platform_driver

named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)

and use the platform_driver called "my_rtc".

++++++++++++++*/

248 if (pdev->id != -1)

249 snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name,

250 pdev->id);

251 else

252 strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE);

253

设置设备struct device 的bus_id成员,留心这个地方,在以后还需要用到这个的。

254 for (i = 0; i < pdev->num_resources; i++) {

255 struct resource *p, *r = &pdev->resource[i];

256

257 if (r->name == NULL)

258 r->name = pdev->dev.bus_id;

259

260 p = r->parent;

261 if (!p) {

262 if (r->flags & IORESOURCE_MEM)

263 p = &iomem_resource;

264 else if (r->flags & IORESOURCE_IO)

265 p = &ioport_resource;

266 }

//resources分为两种IORESOURCE_MEM和IORESOURCE_IO

//CPU对外设IO端口物理地址的编址方式有两种:I/O映射方式和内存映射方式

267

268 if (p && insert_resource(p, r)) {

269 printk(KERN_ERR

270 "%s: failed to claim resource %d/n",

271 pdev->dev.bus_id, i);

272 ret = -EBUSY;

273 goto failed;

274 }

275 }

276

277 pr_debug("Registering platform device '%s'. Parent at %s/n",

278 pdev->dev.bus_id, pdev->dev.parent->bus_id);

279

280 ret = device_add(&pdev->dev);

281 if (ret == 0)

282 return ret;

283

284 failed:

285 while (--i >= 0)

286 if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))

287 release_resource(&pdev->resource[i]);

288 return ret;

289}

290EXPORT_SYMBOL_GPL(platform_device_add);

由platform_device_register和platform_device_add的实现可知,device_register()和platform_device_register()都会首先初始化设备

区别在于第二步:其实platform_device_add()包括device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。

4 device_driver和platform driver

Platform device是一种device自己是不会做事情的,要有人为它做事情,那就是platform driver。platform driver遵循linux系统的driver model。对于device的discovery/enumerate都不是driver自己完成的而是由由系统的driver注册机制完成。driver编写人员只要将注册必须的数据结构初始化并调用注册driver的kernel API就可以了。

接下来来看platform_driver结构体的原型定义,在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L48中,代码如下:

48 struct platform_driver {

49 int (*probe)(struct platform_device *);

50 int (*remove)(struct platform_device *);

51 void (*shutdown)(struct platform_device *);

52 int (*suspend)(struct platform_device *, pm_message_t state);

53 int (*suspend_late)(struct platform_device *, pm_message_t state);

54 int (*resume_early)(struct platform_device *);

55 int (*resume)(struct platform_device *);

56 struct device_driver driver;

57};

可见,它包含了设备操作的几个功能函数,同时包含了一个device_driver结构,说明device_driver是platform_driver的基类。驱动程序中需要初始化这个变量。下面看一下这个变量的定义,位于http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L121中:



121struct device_driver {

122 const char *name;

123 struct bus_type *bus;

124

125 struct module *owner;

126 const char *mod_name; /* used for built-in modules */

127

128 int (*probe) (struct device *dev);

129 int (*remove) (struct device *dev);

130 void (*shutdown) (struct device *dev);

131 int (*suspend) (struct device *dev, pm_message_t state);

132 int (*resume) (struct device *dev);

133 struct attribute_group **groups;

134

135 struct driver_private *p;

136};

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

需要注意这两个变量:name和owner。其作用主要是为了和相关的platform_device关联起来,owner的作用是说明模块的所有者,驱动程序中一般初始化为THIS_MODULE。

device_driver结构中也有一个name变量。platform_driver从字面上来看就知道是设备驱动。设备驱动是为谁服务的呢?当然是设备了。内核正是通过这个一致性来为驱动程序找到资源,即 platform_device中的resource。

5 driver_register 和platform_driver_register

内核提供的platform_driver结构体的注册函数为platform_driver_register(),其原型定义在http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L458文件中,具体实现代码如下:

439/**

440 * platform_driver_register

441 * @drv: platform driver structure

442 */

443int platform_driver_register(struct platform_driver *drv)

444{

445 drv->driver.bus = &platform_bus_type;

/*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通过 platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。*/

446 if (drv->probe)

447 drv->driver.probe = platform_drv_probe;

//在really_probe函数中,回调了platform_drv_probe函数

448 if (drv->remove)

449 drv->driver.remove = platform_drv_remove;

450 if (drv->shutdown)

451 drv->driver.shutdown = platform_drv_shutdown;

452 if (drv->suspend)

453 drv->driver.suspend = platform_drv_suspend;

454 if (drv->resume)

455 drv->driver.resume = platform_drv_resume;

456 return driver_register(&drv->driver);

457}

458EXPORT_SYMBOL_GPL(platform_driver_register);

不要被上面的platform_drv_XXX吓倒了,它们其实很简单,就是将struct device转换为struct platform_device和struct platform_driver,然后调用platform_driver中的相应接口函数。那为什么不直接调用platform_drv_XXX等接口呢?这就是Linux内核中面向对象的设计思想。

device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,device_driver中具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。

在文件http://lxr.linux.no/#linux+v2.6.25/drivers/base/driver.c#L234中,实现了driver_register()函数。

209/**

210 * driver_register - register driver with bus

211 * @drv: driver to register

212 *

213 * We pass off most of the work to the bus_add_driver() call,

214 * since most of the things we have to do deal with the bus

215 * structures.

216 */

217int driver_register(struct device_driver *drv)

218{

219 int ret;

220

//如果总线的方法和设备自己的方法同时存在,将打印告警信息,对于platform bus,其没有probe等接口

221 if ((drv->bus->probe && drv->probe) ||

222 (drv->bus->remove && drv->remove) ||

223 (drv->bus->shutdown && drv->shutdown))

224 printk(KERN_WARNING "Driver '%s' needs updating - please use "

225 "bus_type methods/n", drv->name);

226 ret = bus_add_driver(drv);

227 if (ret)

228 return ret;

229 ret = driver_add_groups(drv, drv->groups);

230 if (ret)

231 bus_remove_driver(drv);

232 return ret;

233}

234EXPORT_SYMBOL_GPL(driver_register);

226 其主要将驱动挂接到总线上,通过总线来驱动设备。

644/**

645 * bus_add_driver - Add a driver to the bus.

646 * @drv: driver.

647 */

648int bus_add_driver(struct device_driver *drv)

649{

650 struct bus_type *bus;

651 struct driver_private *priv;

652 int error = 0;

653

654 bus = bus_get(drv->bus);

655 if (!bus)

656 return -EINVAL;

657

658 pr_debug("bus: '%s': add driver %s/n", bus->name, drv->name);

659

660 priv = kzalloc(sizeof(*priv), GFP_KERNEL);

661 if (!priv) {

662 error = -ENOMEM;

663 goto out_put_bus;

664 }

665 klist_init(&priv->klist_devices, NULL, NULL);

666 priv->driver = drv;

667 drv->p = priv;

668 priv->kobj.kset = bus->p->drivers_kset;

669 error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,

670 "%s", drv->name);

671 if (error)

672 goto out_unregister;

673

674 if (drv->bus->p->drivers_autoprobe) {

675 error = driver_attach(drv);

676 if (error)

677 goto out_unregister;

678 }

679 klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);

680 module_add_driver(drv->owner, drv);

681

682 error = driver_create_file(drv, &driver_attr_uevent); //在sys文件系统中为drv创建目录。

683 if (error) {

684 printk(KERN_ERR "%s: uevent attr (%s) failed/n",

685 __FUNCTION__, drv->name);

686 }

687 error = driver_add_attrs(bus, drv);

688 if (error) {

689 /* How the hell do we get out of this pickle? Give up */

690 printk(KERN_ERR "%s: driver_add_attrs(%s) failed/n",

691 __FUNCTION__, drv->name);

692 }

693 error = add_bind_files(drv);

694 if (error) {

695 /* Ditto */

696 printk(KERN_ERR "%s: add_bind_files(%s) failed/n",

697 __FUNCTION__, drv->name);

698 }

699

700 kobject_uevent(&priv->kobj, KOBJ_ADD);

701 return error;

702out_unregister:

703 kobject_put(&priv->kobj);

704out_put_bus:

705 bus_put(bus);

706 return error;

707}

如果总线上的driver是自动probe的话,则将该总线上的driver和device绑定起来。
http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L285
272/**

273 * driver_attach - try to bind driver to devices.

274 * @drv: driver.

275 *

276 * Walk the list of devices that the bus has on it and try to

277 * match the driver with each one. If driver_probe_device()

278 * returns 0 and the @dev->driver is set, we've found a

279 * compatible pair.

280 */

281int driver_attach(struct device_driver *drv)

282{

283 return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);

284}

285EXPORT_SYMBOL_GPL(driver_attach);

扫描该总线上的每一个设备,将当前driver和总线上的设备进行match,如果匹配成功,则将设备和driver绑定起来。

246static int __driver_attach(struct device *dev, void *data)

247{

248 struct device_driver *drv = data;

249

250 /*

251 * Lock device and try to bind to it. We drop the error

252 * here and always return 0, because we need to keep trying

253 * to bind to devices and some drivers will return an error

254 * simply if it didn't support the device.

255 *

256 * driver_probe_device() will spit a warning if there

257 * is an error.

258 */

259

260 if (dev->parent) /* Needed for USB */

261 down(&dev->parent->sem);

262 down(&dev->sem);

263 if (!dev->driver)

264 driver_probe_device(drv, dev);

265 up(&dev->sem);

266 if (dev->parent)

267 up(&dev->parent->sem);

268

269 return 0;

270}

263,如果该设备尚没有匹配的driver,则尝试匹配。
http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L187
170/**

171 * driver_probe_device - attempt to bind device & driver together

172 * @drv: driver to bind a device to

173 * @dev: device to try to bind to the driver

174 *

175 * First, we call the bus's match function, if one present, which should

176 * compare the device IDs the driver supports with the device IDs of the

177 * device. Note we don't do this ourselves because we don't know the

178 * format of the ID structures, nor what is to be considered a match and

179 * what is not.

180 *

181 * This function returns 1 if a match is found, -ENODEV if the device is

182 * not registered, and 0 otherwise.

183 *

184 * This function must be called with @dev->sem held. When called for a

185 * USB interface, @dev->parent->sem must be held as well.

186 */

187int driver_probe_device(struct device_driver *drv, struct device *dev)

188{

189 int ret = 0;

190

191 if (!device_is_registered(dev))

192 return -ENODEV;

193 if (drv->bus->match && !drv->bus->match(dev, drv))

194 goto done;

195

196 pr_debug("bus: '%s': %s: matched device %s with driver %s/n",

197 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);

198

199 ret = really_probe(dev, drv);

200

201done:

202 return ret;

203}

193,如果该总线上的设备需要进行匹配,则验证是否匹配。对于platform总线,其匹配过程如下:
http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L555
542/**

543 * platform_match - bind platform device to platform driver.

544 * @dev: device.

545 * @drv: driver.

546 *

547 * Platform device IDs are assumed to be encoded like this:

548 * "<name><instance>", where <name> is a short description of the type of

549 * device, like "pci" or "floppy", and <instance> is the enumerated

550 * instance of the device, like '0' or '42'. Driver IDs are simply

551 * "<name>". So, extract the <name> from the platform_device structure,

552 * and compare it against the name of the driver. Return whether they match

553 * or not.

554 */

555static int platform_match(struct device *dev, struct device_driver *drv)

556{

557 struct platform_device *pdev;

558

559 pdev = container_of(dev, struct platform_device, dev);

560 return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);

561}

560,简单的进行字符串匹配,这也是我们强调platform_device和platform_driver中的name属性需要一致的原因。

匹配成功后,则调用probe接口。
http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L101
98static atomic_t probe_count = ATOMIC_INIT(0);

99static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);

100

101static int really_probe(struct device *dev, struct device_driver *drv)

102{

103 int ret = 0;

104

105 atomic_inc(&probe_count);

106 pr_debug("bus: '%s': %s: probing driver %s with device %s/n",

107 drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);

108 WARN_ON(!list_empty(&dev->devres_head));

109

110 dev->driver = drv;

111 if (driver_sysfs_add(dev)) {

112 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed/n",

113 __FUNCTION__, dev->bus_id);

114 goto probe_failed;

115 }

116

117 if (dev->bus->probe) {

118 ret = dev->bus->probe(dev);

119 if (ret)

120 goto probe_failed;

121 } else if (drv->probe) {

122 ret = drv->probe(dev);

123 if (ret)

124 goto probe_failed;

125 }

126

127 driver_bound(dev);

128 ret = 1;

129 pr_debug("bus: '%s': %s: bound device %s to driver %s/n",

130 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);

131 goto done;

132

133probe_failed:

134 devres_release_all(dev);

135 driver_sysfs_remove(dev);

136 dev->driver = NULL;

137

138 if (ret != -ENODEV && ret != -ENXIO) {

139 /* driver matched but the probe failed */

140 printk(KERN_WARNING

141 "%s: probe of %s failed with error %d/n",

142 drv->name, dev->bus_id, ret);

143 }

144 /*

145 * Ignore errors returned by ->probe so that the next driver can try

146 * its luck.

147 */

148 ret = 0;

149done:

150 atomic_dec(&probe_count);

151 wake_up(&probe_waitqueue);

152 return ret;

153}

154

如果bus和driver同时具备probe方法,则优先调用总线的probe函数。否则调用device_driver的probe函数,此probe函数是经过各种类型的driver重载的函数,这就实现了利用基类的统一方法来实现不同的功能。对于platform_driver来说,其就是:
http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L394
394static int platform_drv_probe(struct device *_dev)

395{

396 struct platform_driver *drv = to_platform_driver(_dev->driver);

397 struct platform_device *dev = to_platform_device(_dev);

398

399 return drv->probe(dev);

400}

然后调用特定platform_driver所定义的操作方法,这个是在定义某个platform_driver时静态指定的操作接口。

至此,platform_driver成功挂接到platform bus上了,并与特定的设备实现了绑定,并对设备进行了probe处理。

6 bus、device及driver三者之间的关系

在数据结构设计上,总线、设备及驱动三者相互关联。

platform device包含device,根据device可以获得相应的bus及driver。

设备添加到总线上后形成一个双向循环链表,根据总线可以获得其上挂接的所有device,进而获得了 platform device。根据device也可以获得驱动该总线上所有设备的相关driver。

platform driver包含driver,根据driver可以获得相应的bus,进而获得bus上所有的device,进一步获得platform device,根据name对driver与platform device进行匹配,匹配成功后将device与相应的driver关联起来,即实现了platform device和platform driver的关联。

匹配成功后调用driver的probe进而调用platform driver的probe,在probe里实现驱动特定的功能。



7 哪些适用于plarform驱动?

platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,这样拥有更好的可移植性。platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。Platform driver通过platform bus获取platform_device。

通常情况下只要和内核本身运行依赖性不大的外围设备,相对独立的,拥有各自独立的资源(地址总线和IRQs),都可以用 platform_driver来管理,而timer,irq等小系统之内的设备则最好不用platfrom_driver机制。

platform_device最大的特定是CPU直接寻址设备的寄存器空间,即使对于其他总线设备,设备本身的寄存器无法通过CPU总线访问,但总线的controller仍然需要通过platform bus来管理。

总之,platfrom_driver的根本目的是为了统一管理系统的外设资源,为驱动程序提供统一的接口来访问系统资源,将驱动和资源分离,提高程序的可移植性。

8 基于platform总线的驱动开发流程

基于Platform总线的驱动开发流程如下:

• 定义初始化platform bus

• 定义各种platform devices

• 注册各种platform devices

• 定义相关platform driver

• 注册相关platform driver

• 操作相关设备



图 platform机制开发驱动流程

以S3C24xx平台为例,来简单讲述下platform驱动的实现流程。

8.1 初始化platform_bus

Platform总线的初始化是在platform_bus_init()完成的,代码如下:
http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L621
26struct device platform_bus = {

27 .bus_id = "platform",

28};

29EXPORT_SYMBOL_GPL(platform_bus);

621int __init platform_bus_init(void)

622{

623 int error;

624

625 error = device_register(&platform_bus);

626 if (error)

627 return error;

628 error = bus_register(&platform_bus_type);

629 if (error)

630 device_unregister(&platform_bus);

631 return error;

632}

该函数创建了一个名为 “platform”的设备,后续platform的设备都会以此为parent。在sysfs中表示为:所有platform类型的设备都会添加在 platform_bus所代表的目录下,即 /sys/devices/platform下面。

-sh-3.1# ls /sys/devices/platform/

Fixed MDIO bus.0 fsl-i2c.0 serial8250

fsl-ehci.0 fsl-i2c.1 serial8250.0

fsl-gianfar.0 mpc83xx_spi.0 uevent

fsl-gianfar.1 mpc83xx_wdt.0

fsl-gianfar_mdio.-5 power

-sh-3.1# ls /sys/

block/ class/ firmware/ kernel/ power/

bus/ devices/ fs/ module/

-sh-3.1# ls /sys/bus/

i2c/ of_platform/ pci_express/ scsi/ usb/

mdio_bus/ pci/ platform/ spi/

-sh-3.1# ls /sys/bus/i2c/

devices/ drivers_autoprobe uevent

drivers/ drivers_probe

-sh-3.1# ls /sys/bus/platform/devices/

Fixed MDIO bus.0/ fsl-gianfar_mdio.-5/ mpc83xx_wdt.0/

fsl-ehci.0/ fsl-i2c.0/ serial8250/

fsl-gianfar.0/ fsl-i2c.1/ serial8250.0/

fsl-gianfar.1/ mpc83xx_spi.0/

-sh-3.1# ls /sys/bus/platform/drivers

drivers/ drivers_autoprobe drivers_probe

-sh-3.1# ls /sys/bus/platform/drivers/

fsl-ehci/ fsl-gianfar_mdio/ mpc83xx_spi/ serial8250/

fsl-gianfar/ fsl-i2c/ mpc83xx_wdt/

platform_bus必须在系统注册任何platform driver和platform device之前初始化,那么这是如何实现的呢?
http://lxr.linux.no/#linux+v2.6.25/drivers/base/init.c
14/**

15 * driver_init - initialize driver model.

16 *

17 * Call the driver model init functions to initialize their

18 * subsystems. Called early from init/main.c.

19 */

20void __init driver_init(void)

21{

22 /* These are the core pieces */

23 devices_init();

24 buses_init();

25 classes_init();

26 firmware_init();

27 hypervisor_init();

28

29 /* These are also core pieces, but must come after the

30 * core core pieces.

31 */

32 platform_bus_init();

33 system_bus_init();

34 cpu_dev_init();

35 memory_dev_init();

36}

init/main.c

start_kernel 》 rest_init 》 kernel_init 》 do_basic_setup》driver_init 》platform_bus_init
http://lxr.linux.no/#linux+v2.6.25/drivers/base/init.c#L32
724/*

725 * Ok, the machine is now initialized. None of the devices

726 * have been touched yet, but the CPU subsystem is up and

727 * running, and memory and process management works.

728 *

729 * Now we can finally start doing some real work..

730 */

731static void __init do_basic_setup(void)

732{

733 /* drivers will send hotplug events */

734 init_workqueues();

735 usermodehelper_init();

736 driver_init();

737 init_irq_proc();

738 do_initcalls();

739}

platform driver和platform device的初始化是在do_initcalls中进行的。

8.2 定义platform_device
http://lxr.linux.no/#linux+v2.6.25/arch/arm/plat-s3c24xx/devs.c#L276中定义了系统的资源,是一个高度可移植的文件,大部分板级资源都在这里集中定义。
274/* I2C */

275

276static struct resource s3c_i2c_resource[] = {

277 [0] = {

278 .start = S3C24XX_PA_IIC,

279 .end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC - 1,

280 .flags = IORESOURCE_MEM,

281 },

282 [1] = {

283 .start = IRQ_IIC,

284 .end = IRQ_IIC,

285 .flags = IORESOURCE_IRQ,

286 }

287

288};

289

290struct platform_device s3c_device_i2c = {

291 .name = "s3c2410-i2c",

292 .id = -1,

293 .num_resources = ARRAY_SIZE(s3c_i2c_resource),

294 .resource = s3c_i2c_resource,

295};

296

297EXPORT_SYMBOL(s3c_device_i2c);

设备名称为s3c2410-i2c,“-1”只有一个i2c设备,两个资源s3c_i2c_resource,分别为i2c控制器的寄存器空间和中断信息。

8.3 注册platform_device

定义了platform_device后,需要添加到系统中,就可以调用函数platform_add_devices。
http://lxr.linux.no/#linux+v2.6.25/arch/arm/mach-s3c2440/mach-smdk2440.c
smdk2440_devices将系统资源组织起来,统一注册进内核。

151static struct platform_device *smdk2440_devices[] __initdata = {

152 &s3c_device_usb,

153 &s3c_device_lcd,

154 &s3c_device_wdt,

155 &s3c_device_i2c,

156 &s3c_device_iis,

157};

166static void __init smdk2440_machine_init(void)

167{

168 s3c24xx_fb_set_platdata(&smdk2440_fb_info);

169

170 platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

171 smdk_machine_init();

172}

173

174MACHINE_START(S3C2440, "SMDK2440")

175 /* Maintainer: Ben Dooks <ben@fluff.org> */

176 .phys_io = S3C2410_PA_UART,

177 .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,

178 .boot_params = S3C2410_SDRAM_PA + 0x100,

179

180 .init_irq = s3c24xx_init_irq,

181 .map_io = smdk2440_map_io,

182 .init_machine = smdk2440_machine_init,

183 .timer = &s3c24xx_timer,

184MACHINE_END

170 platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

将系统所有资源注册进系统,在此之前platform bus需要初始化成功,否则无法将platform devices挂接到platform bus上。为了保证platform drive初始化时,相关platform资源已经注册进系统,smdk2440_machine_init需要很早执行,而其作为平台初始化init_machine 时,将优先于系统所有驱动的初始化。

其调用顺序如下:

start_kernel》setup_arch》init_machine》arch_initcall(customize_machine)
http://lxr.linux.no/#linux+v2.6.25/arch/arm/kernel/setup.c#L788
786arch_initcall(customize_machine);

787

788void __init setup_arch(char **cmdline_p)

789{

790 struct tag *tags = (struct tag *)&init_tags;

791 struct machine_desc *mdesc;

792 char *from = default_command_line;

793

794 setup_processor();

795 mdesc = setup_machine(machine_arch_type);

//根据machine id获得移植时定义的machine desc结构

796 machine_name = mdesc->name;

797

798 if (mdesc->soft_reboot)

799 reboot_setup("s");

800

801 if (__atags_pointer)

802 tags = phys_to_virt(__atags_pointer);

803 else if (mdesc->boot_params)

804 tags = phys_to_virt(mdesc->boot_params);

805

806 /*

807 * If we have the old style parameters, convert them to

808 * a tag list.

809 */

810 if (tags->hdr.tag != ATAG_CORE)

811 convert_to_tag_list(tags);

812 if (tags->hdr.tag != ATAG_CORE)

813 tags = (struct tag *)&init_tags;

814

815 if (mdesc->fixup)

816 mdesc->fixup(mdesc, tags, &from, &meminfo);

817

818 if (tags->hdr.tag == ATAG_CORE) {

819 if (meminfo.nr_banks != 0)

820 squash_mem_tags(tags);

821 save_atags(tags);

822 parse_tags(tags);

823 }

824

825 init_mm.start_code = (unsigned long) &_text;

826 init_mm.end_code = (unsigned long) &_etext;

827 init_mm.end_data = (unsigned long) &_edata;

828 init_mm.brk = (unsigned long) &_end;

829

830 memcpy(boot_command_line, from, COMMAND_LINE_SIZE);

831 boot_command_line[COMMAND_LINE_SIZE-1] = '/0';

832 parse_cmdline(cmdline_p, from);

833 paging_init(&meminfo, mdesc);

834 request_standard_resources(&meminfo, mdesc);

835

836#ifdef CONFIG_SMP

837 smp_init_cpus();

838#endif

839

840 cpu_init();

841

842 /*

843 * Set up various architecture-specific pointers

844 */

845 init_arch_irq = mdesc->init_irq;

846 system_timer = mdesc->timer;

847 init_machine = mdesc->init_machine;

//对init_machine指针赋值

848

849#ifdef CONFIG_VT

850#if defined(CONFIG_VGA_CONSOLE)

851 conswitchp = &vga_con;

852#elif defined(CONFIG_DUMMY_CONSOLE)

853 conswitchp = &dummy_con;

854#endif

855#endif

856}

777static void (*init_machine)(void) __initdata;

778

779static int __init customize_machine(void)

780{

781 /* customizes platform devices, or adds new ones */

782 if (init_machine)

783 init_machine();

784 return 0;

785}

786arch_initcall(customize_machine);

arch_initcall将customize_machine放在特定的段中,系统将在某个地方运行所有的arch_initcall修饰的函数。
http://lxr.linux.no/#linux+v2.6.25/include/linux/init.h#L182
152#ifndef MODULE //非可加载模块,即编译链接进内核的代码

153

154#ifndef __ASSEMBLY__

155

156/* initcalls are now grouped by functionality into separate

157 * subsections. Ordering inside the subsections is determined

158 * by link order.

159 * For backwards compatibility, initcall() puts the call in

160 * the device init subsection.

161 *

162 * The `id' arg to __define_initcall() is needed so that multiple initcalls

163 * can point at the same handler without causing duplicate-symbol build errors.

164 */

165

166#define __define_initcall(level,fn,id) /

167 static initcall_t __initcall_##fn##id __used /

168 __attribute__((__section__(".initcall" level ".init"))) = fn

169

170/*

171 * A "pure" initcall has no dependencies on anything else, and purely

172 * initializes variables that couldn't be statically initialized.

173 *

174 * This only exists for built-in code, not for modules.

175 */

176#define pure_initcall(fn) __define_initcall("0",fn,0)

177

178#define core_initcall(fn) __define_initcall("1",fn,1)

179#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)

180#define postcore_initcall(fn) __define_initcall("2",fn,2)

181#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)

182#define arch_initcall(fn) __define_initcall("3",fn,3)

183#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)

184#define subsys_initcall(fn) __define_initcall("4",fn,4)

185#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)

186#define fs_initcall(fn) __define_initcall("5",fn,5)

187#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)

188#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)

189#define device_initcall(fn) __define_initcall("6",fn,6)

190#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)

191#define late_initcall(fn) __define_initcall("7",fn,7)

192#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)

193

194#define __initcall(fn) device_initcall(fn)

195

196#define __exitcall(fn) /

197 static exitcall_t __exitcall_##fn __exit_call = fn

198

。。。。。。。。。

239#endif /* __ASSEMBLY__ */

240

241/**

242 * module_init() - driver initialization entry point

243 * @x: function to be run at kernel boot time or module insertion

244 *

245 * module_init() will either be called during do_initcalls() (if

246 * builtin) or at module insertion time (if a module). There can only

247 * be one per module.

248 */

249#define module_init(x) __initcall(x);

250

251/**

252 * module_exit() - driver exit entry point

253 * @x: function to be run when driver is removed

254 *

255 * module_exit() will wrap the driver clean-up code

256 * with cleanup_module() when used with rmmod when

257 * the driver is a module. If the driver is statically

258 * compiled into the kernel, module_exit() has no effect.

259 * There can only be one per module.

260 */

261#define module_exit(x) __exitcall(x);

262

263#else /* MODULE */

各种xx_core_initcall被定义到了不同的分级的段中

所以arch_initcall == __initcall_fn3 它将被链接器放于section .initcall3.init. 中

module_init()==__initcall(fn)==device_initcall(fn)== __initcall_fn6

各个段的优先级由链接脚本定义
http://lxr.linux.no/#linux+v2.6.25/include/asm-generic/vmlinux.lds.h#L328
#define INITCALLS /

*(.initcall0.init) /

*(.initcall0s.init) /

*(.initcall1.init) /

*(.initcall1s.init) /

*(.initcall2.init) /

*(.initcall2s.init) /

*(.initcall3.init) /

*(.initcall3s.init) /

*(.initcall4.init) /

*(.initcall4s.init) /

*(.initcall5.init) /

*(.initcall5s.init) /

*(.initcallrootfs.init) /

*(.initcall6.init) /

*(.initcall6s.init) /

*(.initcall7.init) /

*(.initcall7s.init)

这个__initcall_start是在文件arch/xxx/kernel/vmlinux.lds.S定义的:

__initcall_start = .;

INITCALLS

__initcall_end = .;
http://lxr.linux.no/#linux+v2.6.25/init/main.c#L664
664static void __init do_initcalls(void)

665{

666 initcall_t *call;

667 int count = preempt_count();

668

669 for (call = __initcall_start; call < __initcall_end; call++) {

.。。。。

682

683 result = (*call)();

684

。。。 }

720 /* Make sure there is no pending stuff from the initcall sequence */

721 flush_scheduled_work();

722}

因此__initcall_fnx,数字越小,越先被调用,故arch_initcall优先于module_init所修饰的函数。

arch_initcall修饰的函数的调用顺序如下:

start_kernel 》 rest_init(在setup_arch之后) 》 kernel_init 》 do_basic_setup》do_initcalls(在driver_init()之后) ,因为platform_bus_init在此之前已经初始化完毕了,便可将设备挂接到总线上了。

8.4 定义platform_driver

Platform bus和设备都定义好了后,需要定义一个platform driver用来驱动此设备。

对于设备来说:

290struct platform_device s3c_device_i2c = {

291 .name = "s3c2410-i2c",

292 .id = -1,

293 .num_resources = ARRAY_SIZE(s3c_i2c_resource),

294 .resource = s3c_i2c_resource,

295};

296

297EXPORT_SYMBOL(s3c_device_i2c);

根据platform总线上device和driver的匹配规则可知,I2C 的platform driver的名字是s3c2410-i2c。
http://lxr.linux.no/#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1
903/* device driver for platform bus bits */

904

905static struct platform_driver s3c2410_i2c_driver = {

906 .probe = s3c24xx_i2c_probe,

907 .remove = s3c24xx_i2c_remove,

908 .resume = s3c24xx_i2c_resume,

909 .driver = {

910 .owner = THIS_MODULE,

911 .name = "s3c2410-i2c",

912 },

913};

8.5 注册platform_driver
http://lxr.linux.no/#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1
925static int __init i2c_adap_s3c_init(void)

926{

927 int ret;

928

929 ret = platform_driver_register(&s3c2410_i2c_driver);

930 if (ret == 0) {

931 ret = platform_driver_register(&s3c2440_i2c_driver);

932 if (ret)

933 platform_driver_unregister(&s3c2410_i2c_driver);

934 }

935

936 return ret;

937}

938

945module_init(i2c_adap_s3c_init);

946module_exit(i2c_adap_s3c_exit);

在i2c_adap_s3c_init中注册s3c2410_i2c_driver,那么i2c_adap_s3c_init何时执行的呢?module_init(i2c_adap_s3c_init)表明其存放在initcall段,调用顺序如下:

init/main.c

start_kernel 》 rest_init 》 kernel_init 》 do_basic_setup》do_initcalls,因为platform_bus_init在此之前已经初始化完毕了,且设备已经注册到内核中了,驱动将和内核绑定,并最终调用s3c24xx_i2c_probe。

748/* s3c24xx_i2c_probe

749 *

750 * called by the bus driver when a suitable device is found

751*/

752

753static int s3c24xx_i2c_probe(struct platform_device *pdev)

754{

755 struct s3c24xx_i2c *i2c = &s3c24xx_i2c;

756 struct resource *res;

757 int ret;

758

759 /* find the clock and enable it */

760

761 i2c->dev = &pdev->dev;

762 i2c->clk = clk_get(&pdev->dev, "i2c");

763 if (IS_ERR(i2c->clk)) {

764 dev_err(&pdev->dev, "cannot get clock/n");

765 ret = -ENOENT;

766 goto err_noclk;

767 }

768

769 dev_dbg(&pdev->dev, "clock source %p/n", i2c->clk);

770

771 clk_enable(i2c->clk);

772

773 /* map the registers */

774

775 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

776 if (res == NULL) {

777 dev_err(&pdev->dev, "cannot find IO resource/n");

778 ret = -ENOENT;

779 goto err_clk;

780 }

781

782 i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1,

783 pdev->name);

784

785 if (i2c->ioarea == NULL) {

786 dev_err(&pdev->dev, "cannot request IO/n");

787 ret = -ENXIO;

788 goto err_clk;

789 }

790

791 i2c->regs = ioremap(res->start, (res->end-res->start)+1);

792

793 if (i2c->regs == NULL) {

794 dev_err(&pdev->dev, "cannot map IO/n");

795 ret = -ENXIO;

796 goto err_ioarea;

797 }

798

799 dev_dbg(&pdev->dev, "registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res);

800

801 /* setup info block for the i2c core */

802

803 i2c->adap.algo_data = i2c;

804 i2c->adap.dev.parent = &pdev->dev;

805

806 /* initialise the i2c controller */

807

808 ret = s3c24xx_i2c_init(i2c);

809 if (ret != 0)

810 goto err_iomap;

811

812 /* find the IRQ for this unit (note, this relies on the init call to

813 * ensure no current IRQs pending

814 */

815

816 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);

817 if (res == NULL) {

818 dev_err(&pdev->dev, "cannot find IRQ/n");

819 ret = -ENOENT;

820 goto err_iomap;

821 }

822

823 ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,

824 pdev->name, i2c);

825

826 if (ret != 0) {

827 dev_err(&pdev->dev, "cannot claim IRQ/n");

828 goto err_iomap;

829 }

830

831 i2c->irq = res;

832

833 dev_dbg(&pdev->dev, "irq resource %p (%lu)/n", res,

834 (unsigned long)res->start);

835

836 ret = i2c_add_adapter(&i2c->adap);

837 if (ret < 0) {

838 dev_err(&pdev->dev, "failed to add bus to i2c core/n");

839 goto err_irq;

840 }

841

842 platform_set_drvdata(pdev, i2c);

843

844 dev_info(&pdev->dev, "%s: S3C I2C adapter/n", i2c->adap.dev.bus_id);

845 return 0;

846

847 err_irq:

848 free_irq(i2c->irq->start, i2c);

849

850 err_iomap:

851 iounmap(i2c->regs);

852

853 err_ioarea:

854 release_resource(i2c->ioarea);

855 kfree(i2c->ioarea);

856

857 err_clk:

858 clk_disable(i2c->clk);

859 clk_put(i2c->clk);

860

861 err_noclk:

862 return ret;

863}

当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:

struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);

根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。

struct int platform_get_irq(struct platform_device *dev, unsigned int num);

获取资源中的中断号。

struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name);

根据参数name所指定的名称,来获取指定的资源。

int platform_get_irq_byname(struct platform_device *dev, char *name);

根据参数name所指定的名称,来获取资源中的中断号。

此probe函数获取物理IO空间,通过request_mem_region和ioremap等操作物理地址转换成内核中的虚拟地址,初始化I2C控制器,通过platform_get_irq或platform_get_resource得到设备的中断号以后,就可以调用request_irq函数来向系统注册中断,并将此I2C控制器添加到系统中。

8.6 操作设备

进行了platform_device_register 和platform_driver_register后,驱动的相应信息就出现在sys目录的相应文件夹下,然后,我们该如何调用设备呢??怎么对设备进行打开读写等操作呢???

Platform总线只是为了方便管理挂接在CPU总线上的设备,与用户空间的交互,如读写还是需要利用file_operations。当然如果此platform设备无需和用户空间交互,则无需file_operations实例。

对于I2C总线来说,其file_operations如下:
http://lxr.linux.no/#linux+v2.6.25/drivers/i2c/i2c-core.c#L461
478static const struct file_operations i2cdev_fops = {

479 .owner = THIS_MODULE,

480 .llseek = no_llseek,

481 .read = i2cdev_read,

482 .write = i2cdev_write,

483 .ioctl = i2cdev_ioctl,

484 .open = i2cdev_open,

485 .release = i2cdev_release,

486};

其和platform bus的区别在于,platform bus提供机制访问I2C 控制器本身的资源,而I2C总线提供访问I2C 控制器上挂接的I2C设备的机制。

另有接合I2C讲接设备、驱动、platform总线的文章:http://blog.csdn.net/lycheng2004/article/details/2155965
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: