您的位置:首页 > 数据库 > Oracle

Oracle索引技术之如何建立最佳索引

2011-07-31 22:27 351 查看
8、代理模式(Proxy)其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:
public interface Sourceable {
public void method();
}
public class Source implements Sourceable {

@Override
public void method() {
System.out.println("the original method!");
}
}
public class Proxy implements Sourceable {

private Source source;
public Proxy(){
super();
this.source = new Source();
}
@Override
public void method() {
before();
source.method();
atfer();
}
private void atfer() {
System.out.println("after proxy!");
}
private void before() {
System.out.println("before proxy!");
}
}
测试类:
public class ProxyTest {

public static void main(String[] args) {
Sourceable source = new Proxy();
source.method();
}

}

输出:before proxy!
the original method!
after proxy!代理模式的应用场景:如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。使用代理模式,可以将功能划分的更加清晰,有助于后期维护!9、外观模式(Facade)外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

我们先看下实现类:
public class CPU {

public void startup(){
System.out.println("cpu startup!");
}

public void shutdown(){
System.out.println("cpu shutdown!");
}
}
public class Memory {

public void startup(){
System.out.println("memory startup!");
}

public void shutdown(){
System.out.println("memory shutdown!");
}
}
public class Disk {

public void startup(){
System.out.println("disk startup!");
}

public void shutdown(){
System.out.println("disk shutdown!");
}
}
public class Computer {
private CPU cpu;
private Memory memory;
private Disk disk;

public Computer(){
cpu = new CPU();
memory = new Memory();
disk = new Disk();
}

public void startup(){
System.out.println("start the computer!");
cpu.startup();
memory.startup();
disk.startup();
System.out.println("start computer finished!");
}

public void shutdown(){
System.out.println("begin to close the computer!");
cpu.shutdown();
memory.shutdown();
disk.shutdown();
System.out.println("computer closed!");
}
}
User类如下:
public class User {

public static void main(String[] args) {
Computer computer = new Computer();
computer.startup();
computer.shutdown();
}
}
输出:start the computer!
cpu startup!
memory startup!
disk startup!
start computer finished!
begin to close the computer!
cpu shutdown!
memory shutdown!
disk shutdown!
computer closed!如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!10、桥接模式(Bridge)桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

实现代码:先定义接口:
public interface Sourceable {
public void method();
}
分别定义两个实现类:
public class SourceSub1 implements Sourceable {

@Override
public void method() {
System.out.println("this is the first sub!");
}
}
public class SourceSub2 implements Sourceable {

@Override
public void method() {
System.out.println("this is the second sub!");
}
}
定义一个桥,持有Sourceable的一个实例:
public abstract class Bridge {
private Sourceable source;

public void method(){
source.method();
}

public Sourceable getSource() {
return source;
}

public void setSource(Sourceable source) {
this.source = source;
}
}
public class MyBridge extends Bridge {
public void method(){
getSource().method();
}
}
测试类:
public class BridgeTest {

public static void main(String[] args) {

Bridge bridge = new MyBridge();

//调用第一个对象
Sourceable source1 = new SourceSub1();
bridge.setSource(source1);
bridge.method();

//调用第二个对象
Sourceable source2 = new SourceSub2();
bridge.setSource(source2);
bridge.method();
}
}
output:this is the first sub!
this is the second sub!这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

11、组合模式(Composite)组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

直接来看代码:
public class TreeNode {

private String name;
private TreeNode parent;
private Vector<TreeNode> children = new Vector<TreeNode>();

public TreeNode(String name){
this.name = name;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public TreeNode getParent() {
return parent;
}

public void setParent(TreeNode parent) {
this.parent = parent;
}

//添加孩子节点
public void add(TreeNode node){
children.add(node);
}

//删除孩子节点
public void remove(TreeNode node){
children.remove(node);
}

//取得孩子节点
public Enumeration<TreeNode> getChildren(){
return children.elements();
}
}
public class Tree {

TreeNode root = null;

public Tree(String name) {
root = new TreeNode(name);
}

public static void main(String[] args) {
Tree tree = new Tree("A");
TreeNode nodeB = new TreeNode("B");
TreeNode nodeC = new TreeNode("C");

nodeB.add(nodeC);
tree.root.add(nodeB);
System.out.println("build the tree finished!");
}
}


使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。
12、享元模式(Flyweight)享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。看个例子:

看下数据库连接池的代码:
public class ConnectionPool {

private Vector<Connection> pool;

//公有属性
private String url = "jdbc:mysql://localhost:3306/test";
private String username = "root";
private String password = "root";
private String driverClassName = "com.mysql.jdbc.Driver";

private int poolSize = 100;
private static ConnectionPool instance = null;
Connection conn = null;

//构造方法,做一些初始化工作
private ConnectionPool() {
pool = new Vector<Connection>(poolSize);

for (int i = 0; i < poolSize; i++) {
try {
Class.forName(driverClassName);
conn = DriverManager.getConnection(url, username, password);
pool.add(conn);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (SQLException e) {
e.printStackTrace();
}
}
}

// 返回连接到连接池
public synchronized void release() {
pool.add(conn);
}

// 返回连接池中的一个数据库连接
public synchronized Connection getConnection() {
if (pool.size() > 0) {
Connection conn = pool.get(0);
pool.remove(conn);
return conn;
} else {
return null;
}
}
}

通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!本章讲解了7种结构型模式,因为篇幅的问题,剩下的11种行为型模式,本章是关于设计模式的最后一讲,会讲到第三种设计模式――行为型模式,共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。这段时间一直在写关于设计模式的东西,终于写到一半了,写博文是个很费时间的东西,因为我得为读者负责,不论是图还是代码还是表述,都希望能尽量写清楚,以便读者理解,我想不论是我还是读者,都希望看到高质量的博文出来,从我本人出发,我会一直坚持下去,不断更新,源源动力来自于读者朋友们的不断支持,我会尽自己的努力,写好每一篇文章!希望大家能不断给出意见和建议,共同打造完美的博文!先来张图,看看这11中模式的关系:第一类:通过父类与子类的关系进行实现。第二类:两个类之间。第三类:类的状态。第四类:通过中间类

13、策略模式(strategy)策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:

图中ICalculator提供同意的方法,
AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:首先统一接口:
public interface ICalculator {
public int calculate(String exp);
}


辅助类:
public abstract class AbstractCalculator {

public int[] split(String exp,String opt){
String array[] = exp.split(opt);
int arrayInt[] = new int[2];
arrayInt[0] = Integer.parseInt(array[0]);
arrayInt[1] = Integer.parseInt(array[1]);
return arrayInt;
}
}


三个实现类:
public class Plus extends AbstractCalculator implements ICalculator {

@Override
public int calculate(String exp) {
int arrayInt[] = split(exp,"\\+");
return arrayInt[0]+arrayInt[1];
}
}
public class Minus extends AbstractCalculator implements ICalculator {

@Override
public int calculate(String exp) {
int arrayInt[] = split(exp,"-");
return arrayInt[0]-arrayInt[1];
}

}
public class Multiply extends AbstractCalculator implements ICalculator {

@Override
public int calculate(String exp) {
int arrayInt[] = split(exp,"\\*");
return arrayInt[0]*arrayInt[1];
}
}
简单的测试类:
public class StrategyTest {

public static void main(String[] args) {
String exp = "2+8";
ICalculator cal = new Plus();
int result = cal.calculate(exp);
System.out.println(result);
}
}
输出:10策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。14、模板方法模式(Template Method)解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用,先看个关系图:

就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等,Plus和Minus分别继承AbstractCalculator类,通过对AbstractCalculator的调用实现对子类的调用,看下面的例子:
public abstract class AbstractCalculator {

//主方法,实现对本类其它方法的调用
public final int calculate(String exp,String opt){
int array[] = split(exp,opt);
return calculate(array[0],array[1]);
}

//被子类重写的方法
abstract public int calculate(int num1,int num2);

public int[] split(String exp,String opt){
String array[] = exp.split(opt);
int arrayInt[] = new int[2];
arrayInt[0] = Integer.parseInt(array[0]);
arrayInt[1] = Integer.parseInt(array[1]);
return arrayInt;
}
}
public class Plus extends AbstractCalculator {

@Override
public int calculate(int num1,int num2) {
return num1 + num2;
}
}
测试类:
public class StrategyTest {

public static void main(String[] args) {
String exp = "8+8";
AbstractCalculator cal = new Plus();
int result = cal.calculate(exp, "\\+");
System.out.println(result);
}
}
我跟踪下这个小程序的执行过程:首先将exp和"\\+"做参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。15、观察者模式(Observer)包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图。观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时,经常会看到RSS图标,就这的意思是,当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。先来看看关系图:

我解释下这些类的作用:MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。我们看实现代码:一个Observer接口:
public interface Observer {
public void update();
}
两个实现类:
public class Observer1 implements Observer {

@Override
public void update() {
System.out.println("observer1 has received!");
}
}
public class Observer2 implements Observer {

@Override
public void update() {
System.out.println("observer2 has received!");
}

}
Subject接口及实现类:
public interface Subject {

//增加观察者
public void add(Observer observer);

//删除观察者
public void del(Observer observer);

//通知所有的观察者
public void notifyObservers();

//自身的操作
public void operation();
}
public abstract class AbstractSubject implements Subject {

private Vector<Observer> vector = new Vector<Observer>();
@Override
public void add(Observer observer) {
vector.add(observer);
}

@Override
public void del(Observer observer) {
vector.remove(observer);
}

@Override
public void notifyObservers() {
Enumeration<Observer> enumo = vector.elements();
while(enumo.hasMoreElements()){
enumo.nextElement().update();
}
}
}
public class MySubject extends AbstractSubject {

@Override
public void operation() {
System.out.println("update self!");
notifyObservers();
}

}

测试类:
public class ObserverTest {

public static void main(String[] args) {
Subject sub = new MySubject();
sub.add(new Observer1());
sub.add(new Observer2());

sub.operation();
}

}
输出:update self!
observer1 has received!
observer2 has received! 这些东西,其实不难,只是有些抽象,不太容易整体理解,建议读者:根据关系图,新建项目,自己写代码(或者参考我的代码),[b]按照总体思路走一遍,这样才能体会它的思想,理解起来容易![/b]16、迭代子模式(Iterator)顾名思义,迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。我们看下关系图:

这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作,MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码:两个接口:
public interface Collection {

public Iterator iterator();

//取得集合元素
public Object get(int i);

//取得集合大小
public int size();
}
public interface Iterator {
//前移
public Object previous();

//后移
public Object next();
public boolean hasNext();

//取得第一个元素
public Object first();
}
两个实现:
public class MyCollection implements Collection {

public String string[] = {"A","B","C","D","E"};
@Override
public Iterator iterator() {
return new MyIterator(this);
}

@Override
public Object get(int i) {
return string[i];
}

@Override
public int size() {
return string.length;
}
}
public class MyIterator implements Iterator {

private Collection collection;
private int pos = -1;

public MyIterator(Collection collection){
this.collection = collection;
}

@Override
public Object previous() {
if(pos > 0){
pos--;
}
return collection.get(pos);
}

@Override
public Object next() {
if(pos<collection.size()-1){
pos++;
}
return collection.get(pos);
}

@Override
public boolean hasNext() {
if(pos<collection.size()-1){
return true;
}else{
return false;
}
}

@Override
public Object first() {
pos = 0;
return collection.get(pos);
}

}
测试类:

public class Test {

public static void main(String[] args) {
Collection collection = new MyCollection();
Iterator it = collection.iterator();

while(it.hasNext()){
System.out.println(it.next());
}
}
}
输出:A B C D E此处我们貌似模拟了一个集合类的过程,感觉是不是很爽?其实JDK中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一起的,只要我们把这些东西学会了,掌握好了,我们也可以写出自己的集合类,甚至框架!17、责任链模式(Chain of Responsibility)
接下来我们将要谈谈责任链模式,有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。先看看关系图:

Abstracthandler类提供了get和set方法,方便MyHandle类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链。
public interface Handler {
public void operator();
}
public abstract class AbstractHandler {

private Handler handler;

public Handler getHandler() {
return handler;
}

public void setHandler(Handler handler) {
this.handler = handler;
}

}
public class MyHandler extends AbstractHandler implements Handler {

private String name;

public MyHandler(String name) {
this.name = name;
}

@Override
public void operator() {
System.out.println(name+"deal!");
if(getHandler()!=null){
getHandler().operator();
}
}
}
public class Test {

public static void main(String[] args) {
MyHandler h1 = new MyHandler("h1");
MyHandler h2 = new MyHandler("h2");
MyHandler h3 = new MyHandler("h3");

h1.setHandler(h2);
h2.setHandler(h3);

h1.operator();
}
}


输出:h1deal!
h2deal!
h3deal!此处强调一点就是,链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: