您的位置:首页 > 编程语言 > Go语言

Google Megastore分布式存储技术全揭秘(2)

2011-02-21 18:57 253 查看

Google Megastore分布式存储技术全揭秘(2)

2011-02-16 09:41
|
22951次阅读
|
【已有22
条评论】发表评论

来源:CSDN
|
作者:
|
收藏到我的网摘

Megastore支持事务和并发控制。一个事务写操作会首先写入对应Entity
Group的日志中,然后才会更新具体数据。BigTable具有一项在相同row/column中存储多个版本带有不同时间戳的数据。正是因为有这个特
性,Megastore实现了多版本并发控制(MVCC,这个包括oracle,innodb都是使用这种方式实现ACID,当然具体方式会有所不同):
当一个事务的多个更新实施时,写入的值会带有这个事务的时间戳。读操作会使用最后一个完全生效事务的时间戳以避免看到不完整的数据.读写操作不相互阻塞,
并且读操作在写事务进行中会被隔离(?)。

Megastore
提供了current,snapshot,和inconsistent读,current和snapshot级别通常是读取单个entity
group。当开始一个current读操作时,事务系统会首先确认所有之前提交的写已经生效了;然后系统从最后一个成功提交的事务时间戳位置读取数据。
对于snapshot读取,系统拿到己经知道的完整提交的事务时间戳并且从那个位置直接读取数据,和current读取不同的是,这个时候可能提交的事务
更新数据还没有完全生效(提交和生效是不同的)。Megastore提供的第三种读就是inconsistent读,这种读无视日志状态并且直接读取最后
一个值。这种方式的读对于那些对减少延迟有强烈需求,并且能够容忍数据过期或者不完整的读操作是非常有用的。

一个写事务通常开始于一个current读操作以便确定下一个可用的日志位置。提交操作将数据变更聚集到日志,并且分配一个比之前任何一个都高的时
间戳,并且使用Paxos将这个log
entry加入到日志中。这个协议使用了乐观并发:即使有可能有多个写操作同时试图写同一个日志位置,但只会有1个成功。所有失败的写都会观察到成功的写
操作,然后中止,并且重试它们的操作。咨询式的锁定能够减少争用所带来的影响。通过特定的前端服务器分批写入似乎能够完全避免竞争(这几句有些不能理解)
[ Advisory locking is available to reduce the effects of contention.
Batching writes through session affinity to a particular front-end
server can avoid contention altogether.]。

完整事务生命周期包括以下步骤:

1.读:获取时间戳和最后一个提交事务的日志位置

2.应用逻辑:从BigTable读取并且聚集写操作到一个日志Entry

3.提交:使用Paxos将日志Entry加到日志中

4.生效:将数据更新到BigTable的实体和索引中

5.清理:删除不再需要的数据

写操作能够在提交之后的任何点返回,但是最好还是等到最近的副本(replica)生效(再返回)。

Megastore提供的消息队列提供了在不同Entity Group之间的事务消息。它们能被用作跨Entity
Group的操作,在一个事务中分批执行多个更新,或者延缓工作(?)。一个在单个Entity
Group上的事务能够原子性地发送或者收到多个信息除了更新它自己的实体。每个消息都有一个发送和接收的Entity
Group;如果这两个Entity Group是不同的,那么传输将会是异步的。

消息队列提供了一种将会影响到多个Entity Group的操作的途径,举个例子,日历应用中,每一个日历有一个独立的Entity
Group,并且我们现在需要发送一个邀请到多个其他人的日历中,一个事务能够原子地发送邀请消息到多个独立日历中。每个日历收到消息都会把邀请加入到它
自己的事务中,并且这个事务会更新被邀请人状态然后删除这个消息。Megastore大规模使用了这种模式:声明一个队列后会自动在每一个Entity
Group上创建一个收件箱。

Megastore支持使用二段提交进行跨Entity Group的原子更新操作。因为这些事务有比较高的延迟并且增加了竞争的风险,一般不鼓励使用。

接下来内容具体来介绍下Megastore最核心的同步复制模式:一个低延迟的Paxos实现。Megastore的复制系统向外提供了一个单一
的,一致的数据视图,读和写能够从任何副本(repli ca)开始,并且无论从哪个副本的客户端开始,都能保证ACID语义。每个Entity
Group复制结束标志是将这个Entity
Group事务日志同步地复制到一组副本中。写操作通常需要一个数据中心内部的网络交互,并且会跑检查健康状况的读操作。current级别的读操作会有
以下保证:

1.一个读总是能够看到最后一个被确认的写。(可见性)

2.在一个写被确认后,所有将来的读都能够观察到这个写的结果。(持久性,一个写可能在确认之前就被观察到)

数据库典型使用Paxos一般是用来做事务日志的复制,日志中每个位置都由一个Paxos实例来负责。新的值将会被写入到之前最后一个被选中的位置之后。

Megastore在事先Paxos过程中,首先设定了一个需求,就是current
reads可能在任何副本中进行,并且不需要任何副本之间的RPC交互。因为写操作一般会在所有副本上成功,所以允许在任何地方进行本地读取是现实的。这
些本地读取能够很好地被利用,所有区域的低延迟,细颗粒度的读取failover,还有简单的编程体验。

Megastore设计实现了一个叫做Coordinator(协调者)的服务,这个服务分布在每个副本的数据中心里面。一个
Coordinator服务器跟踪一个Entity Groups集合,这个集合中的Entity
Groups需要具备的条件就是它们的副本已经观察到了所有的Paxos写。在这个集合中的Entity
Groups,它们的副本能够进行本地读取(local read)。

写操作算法有责任保持Coordinator状态是保守的,如果一个写在一个副本上失败了,那么这次操作就不能认为是提交的,直到这个entity group的key从这个副本的coordinator中去除。(这里不明白)

为了达到快速的单次交互的写操作,Megastore采用了一种Master-Slave方式的优化,如果一次写成功了,那么会顺带下一次写的保证
(也就是下一次写就不需要prepare去申请一个log
position),下一次写的时候,跳过prepare过程,直接进入accept阶段。Megastore没有使用专用的Masters,但是使用
Leaders。

Megastore为每一个日志位置运行一个Paxos算法实例。[ The leader for each log position is a

distinguished replica chosen alongside the preceding log position's
consensus value.]
Leader仲裁在0号提议中使用哪一个值。第一个写入者向Leader提交一个值会赢得一个向所有副本请求接收这个值做为0号提议最终值的机会。所有其
他写入者必需退回到Paxos的第二阶段。

因为一个写入在提交值到其他副本之前必需和Leader交互,所以必需尽量减少写入者和Leader之间的延迟。Megastore设计了它们自己
的选取下一个写入Leader的规则,以同一地区多数应用提交的写操作来决定。这个产生了一个简单但是有效的原则:使用最近的副本。(这里我理解的是哪个
位置提交的写多,那么使用离这个位置最近的副本做为Leader)

共3页:

上一页

1

2

3

下一页
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: