您的位置:首页 > 编程语言 > C#

编写高效的C#图像处理程序(3) Rgb=>Lab,图像缺陷检测的例子

2011-01-13 02:12 901 查看
最近项目需要检测图像是否存在偏色、过亮、模糊等缺陷。由于主要用在视频监控上,对性能要求比较高。有几项检测必须要在Lab彩色下进行,而众所周知Rgb => Lab 计算量较大,C#搞得定搞不定?测试表明,用纯C#编写的Rgb => Lab代码在性能上与C编写的Rgb => Lab代码极为接近。

1. Rgb24和Lab24

Rgb是电脑上使用较多的彩色空间,Lab是针对人的感知设计的均匀彩色空间,很多情况下进行彩色图像分析,需要在Rgb彩色空间和Lab彩色空间之间进行转化。关于Lab彩色空间的详细介绍和Rgb空间与Lab空间的转换公式见维基百科的对应词条 Lab色彩空间,本文不再叙述。

使用Rgb24和Lab24两个struct定义Rgb彩色空间的像素和Lab彩色空间的像素。

Rgb24 <=> Lab24   1 public sealed class UnmanagedImageConverter 
  2 { 
  3     /* 1024*(([0..511]./255)**(1./3)) */ 
  4     static ushort[] icvLabCubeRootTab = new ushort[] { 
  5     0,161,203,232,256,276,293,308,322,335,347,359,369,379,389,398, 
  6     406,415,423,430,438,445,452,459,465,472,478,484,490,496,501,507, 
  7     512,517,523,528,533,538,542,547,552,556,561,565,570,574,578,582, 
  8     586,590,594,598,602,606,610,614,617,621,625,628,632,635,639,642, 
  9     645,649,652,655,659,662,665,668,671,674,677,680,684,686,689,692, 
10     695,698,701,704,707,710,712,715,718,720,723,726,728,731,734,736, 
11     739,741,744,747,749,752,754,756,759,761,764,766,769,771,773,776, 
12     778,780,782,785,787,789,792,794,796,798,800,803,805,807,809,811, 
13     813,815,818,820,822,824,826,828,830,832,834,836,838,840,842,844, 
14     846,848,850,852,854,856,857,859,861,863,865,867,869,871,872,874, 
15     876,878,880,882,883,885,887,889,891,892,894,896,898,899,901,903, 
16     904,906,908,910,911,913,915,916,918,920,921,923,925,926,928,929, 
17     931,933,934,936,938,939,941,942,944,945,947,949,950,952,953,955, 
18     956,958,959,961,962,964,965,967,968,970,971,973,974,976,977,979, 
19     980,982,983,985,986,987,989,990,992,993,995,996,997,999,1000,1002, 
20     1003,1004,1006,1007,1009,1010,1011,1013,1014,1015,1017,1018,1019,1021,1022,1024, 
21     1025,1026,1028,1029,1030,1031,1033,1034,1035,1037,1038,1039,1041,1042,1043,1044, 
22     1046,1047,1048,1050,1051,1052,1053,1055,1056,1057,1058,1060,1061,1062,1063,1065, 
23     1066,1067,1068,1070,1071,1072,1073,1074,1076,1077,1078,1079,1081,1082,1083,1084, 
24     1085,1086,1088,1089,1090,1091,1092,1094,1095,1096,1097,1098,1099,1101,1102,1103, 
25     1104,1105,1106,1107,1109,1110,1111,1112,1113,1114,1115,1117,1118,1119,1120,1121, 
26     1122,1123,1124,1125,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1138,1139, 
27     1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1154,1155,1156, 
28     1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172, 
29     1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188, 
30     1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204, 
31     1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1215,1216,1217,1218,1219, 
32     1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1230,1231,1232,1233,1234, 
33     1235,1236,1237,1238,1239,1240,1241,1242,1242,1243,1244,1245,1246,1247,1248,1249, 
34     1250,1251,1251,1252,1253,1254,1255,1256,1257,1258,1259,1259,1260,1261,1262,1263, 
35     1264,1265,1266,1266,1267,1268,1269,1270,1271,1272,1273,1273,1274,1275,1276,1277, 
36     1278,1279,1279,1280,1281,1282,1283,1284,1285,1285,1286,1287,1288,1289,1290,1291 
37     }; 
38 
39     const float labXr_32f = 0.433953f /* = xyzXr_32f / 0.950456 */; 
40     const float labXg_32f = 0.376219f /* = xyzXg_32f / 0.950456 */; 
41     const float labXb_32f = 0.189828f /* = xyzXb_32f / 0.950456 */; 
42 
43     const float labYr_32f = 0.212671f /* = xyzYr_32f */; 
44     const float labYg_32f = 0.715160f /* = xyzYg_32f */; 
45     const float labYb_32f = 0.072169f /* = xyzYb_32f */; 
46 
47     const float labZr_32f = 0.017758f /* = xyzZr_32f / 1.088754 */; 
48     const float labZg_32f = 0.109477f /* = xyzZg_32f / 1.088754 */; 
49     const float labZb_32f = 0.872766f /* = xyzZb_32f / 1.088754 */; 
50 
51     const float labRx_32f = 3.0799327f  /* = xyzRx_32f * 0.950456 */; 
52     const float labRy_32f = (-1.53715f) /* = xyzRy_32f */; 
53     const float labRz_32f = (-0.542782f)/* = xyzRz_32f * 1.088754 */; 
54 
55     const float labGx_32f = (-0.921235f)/* = xyzGx_32f * 0.950456 */; 
56     const float labGy_32f = 1.875991f   /* = xyzGy_32f */ ; 
57     const float labGz_32f = 0.04524426f /* = xyzGz_32f * 1.088754 */; 
58 
59     const float labBx_32f = 0.0528909755f /* = xyzBx_32f * 0.950456 */; 
60     const float labBy_32f = (-0.204043f)  /* = xyzBy_32f */; 
61     const float labBz_32f = 1.15115158f   /* = xyzBz_32f * 1.088754 */; 
62 
63     const float labT_32f = 0.008856f; 
64 
65     const int lab_shift = 10; 
66 
67     const float labLScale2_32f = 903.3f; 
68 
69     const int labXr = (int)((labXr_32f) * (1 << (lab_shift)) + 0.5); 
70     const int labXg = (int)((labXg_32f) * (1 << (lab_shift)) + 0.5); 
71     const int labXb = (int)((labXb_32f) * (1 << (lab_shift)) + 0.5); 
72 
73     const int labYr = (int)((labYr_32f) * (1 << (lab_shift)) + 0.5); 
74     const int labYg = (int)((labYg_32f) * (1 << (lab_shift)) + 0.5); 
75     const int labYb = (int)((labYb_32f) * (1 << (lab_shift)) + 0.5); 
76 
77     const int labZr = (int)((labZr_32f) * (1 << (lab_shift)) + 0.5); 
78     const int labZg = (int)((labZg_32f) * (1 << (lab_shift)) + 0.5); 
79     const int labZb = (int)((labZb_32f) * (1 << (lab_shift)) + 0.5); 
80 
81     const float labLScale_32f = 116.0f; 
82     const float labLShift_32f = 16.0f; 
83 
84     const int labSmallScale = (int)((31.27 /* labSmallScale_32f*(1<<lab_shift)/255 */ ) * (1 << (lab_shift)) + 0.5); 
85 
86     const int labSmallShift = (int)((141.24138 /* labSmallScale_32f*(1<<lab) */ ) * (1 << (lab_shift)) + 0.5); 
87 
88     const int labT = (int)((labT_32f * 255) * (1 << (lab_shift)) + 0.5); 
89 
90     const int labLScale = (int)((295.8) * (1 << (lab_shift)) + 0.5); 
91     const int labLShift = (int)((41779.2) * (1 << (lab_shift)) + 0.5); 
92     const int labLScale2 = (int)((labLScale2_32f * 0.01) * (1 << (lab_shift)) + 0.5); 
93 
94     public static unsafe void ToLab24(Rgb24* from, Lab24* to) 
95     { 
96         ToLab24(from,to,1); 
97     } 
98 
99     public static unsafe void ToLab24(Rgb24* from, Lab24* to, int length) 
100     { 
101         // 使用 OpenCV 中的算法实现
102 
103         if (length < 1) return; 
104 
105         Rgb24* end = from + length; 
106 
107         int x, y, z; 
108         int l, a, b; 
109         bool flag; 
110 
111         while (from != end) 
112         { 
113             Byte red = from->Red; 
114             Byte green = from->Green; 
115             Byte blue = from->Blue; 
116 
117             x = blue * labXb + green * labXg + red * labXr; 
118             y = blue * labYb + green * labYg + red * labYr; 
119             z = blue * labZb + green * labZg + red * labZr; 
120 
121             flag = x > labT; 
122 
123             x = (((x) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
124 
125             if (flag) 
126                 x = icvLabCubeRootTab[x]; 
127             else 
128                 x = (((x * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
129 
130             flag = z > labT; 
131             z = (((z) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
132 
133             if (flag == true) 
134                 z = icvLabCubeRootTab[z]; 
135             else 
136                 z = (((z * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
137 
138             flag = y > labT; 
139             y = (((y) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
140 
141             if (flag == true) 
142             { 
143                 y = icvLabCubeRootTab[y]; 
144                 l = (((y * labLScale - labLShift) + (1 << ((2 * lab_shift) - 1))) >> (2 * lab_shift)); 
145             } 
146             else 
147             { 
148                 l = (((y * labLScale2) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
149                 y = (((y * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift)); 
150             } 
151 
152             a = (((500 * (x - y)) + (1 << ((lab_shift) - 1))) >> (lab_shift)) + 129; 
153             b = (((200 * (y - z)) + (1 << ((lab_shift) - 1))) >> (lab_shift)) + 128; 
154 
155             l = l > 255 ? 255 : l < 0 ? 0 : l; 
156             a = a > 255 ? 255 : a < 0 ? 0 : a; 
157             b = b > 255 ? 255 : b < 0 ? 0 : b; 
158 
159             to->L = (byte)l; 
160             to->A = (byte)a; 
161             to->B = (byte)b; 
162 
163             from++; 
164             to++; 
165         } 
166     } 
167 
168     public static unsafe void ToRgb24(Lab24* from, Rgb24* to) 
169     { 
170         ToRgb24(from,to,1); 
171     } 
172 
173     public static unsafe void ToRgb24(Lab24* from, Rgb24* to, int length) 
174     { 
175         if (length < 1) return; 
176 
177         // 使用 OpenCV 中的算法实现
178         const float coeff0 = 0.39215686274509809f; 
179         const float coeff1 = 0.0f; 
180         const float coeff2 = 1.0f; 
181         const float coeff3 = (-128.0f); 
182         const float coeff4 = 1.0f; 
183         const float coeff5 = (-128.0f); 
184 
185         if (length < 1) return; 
186 
187         Lab24* end = from + length; 
188         float x, y, z,l,a,b; 
189         int blue, green, red; 
190 
191         while (from != end) 
192         { 
193             l = from->L * coeff0 + coeff1; 
194             a = from->A * coeff2 + coeff3; 
195             b = from->B * coeff4 + coeff5; 
196 
197             l = (l + labLShift_32f) * (1.0f / labLScale_32f); 
198             x = (l + a * 0.002f); 
199             z = (l - b * 0.005f); 
200 
201             y = l * l * l; 
202             x = x * x * x; 
203             z = z * z * z; 
204 
205             blue = (int)((x * labBx_32f + y * labBy_32f + z * labBz_32f) * 255 + 0.5); 
206             green = (int)((x * labGx_32f + y * labGy_32f + z * labGz_32f) * 255 + 0.5); 
207             red = (int)((x * labRx_32f + y * labRy_32f + z * labRz_32f) * 255 + 0.5); 
208 
209             red = red < 0 ? 0 : red > 255 ? 255 : red; 
210             green = green < 0 ? 0 : green > 255 ? 255 : green; 
211             blue = blue < 0 ? 0 : blue > 255 ? 255 : blue; 
212 
213             to->Red = (byte)red; 
214             to->Green = (byte)green; 
215             to->Blue = (byte)blue; 
216 
217             from++; 
218             to++; 
219         } 
220     } 
221 }  

由于C代码中使用了宏,在改写成C#代码时需要手动内联,以提高性能。上面的代码已经实现手动内联。

3. (A)C#实现与(B)C实现的性能对比(C# vs. OpenCV/PInvoke)

C# 版本(ImageRgb24 代表一幅Rgb24图像,ImageLab24代表一幅Lab24图像,它们之间的变化是调用上文UnmanagedImageConverter中的方法实现的):

Stopwatch sw = new Stopwatch();
sw.Start();
ImageLab24 imgLab = null;
imgLab = new ImageLab24(img);  // img 是一个 ImageRgb24 对象
sw.Stop();
Message = sw.ElapsedMilliseconds.ToString();

OpenCV版本(使用EmguCV对OpenCV的PInvoke封装)

private Image<Lab,Byte> TestOpenCV()
{
    Image<Bgr, Byte> imgBgr = new Image<Bgr, byte>(imgMain.Image as Bitmap);
    Image<Lab,Byte> imgLab = new Image<Lab,byte>(new Size(imgBgr.Width, imgBgr.Height));
    Stopwatch sw = new Stopwatch();
    sw.Start();
    CvInvoke.cvCvtColor(imgBgr.Ptr,imgLab.Ptr, Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2Lab);
    sw.Stop();
    MessageBox.Show(sw.ElapsedMilliseconds.ToString() + "ms");
    return imgLab;
}

下面针对三副不同大小的图像进行测试,每张图像测试4次,每次测试将上面两种实现各跑一次,前2次,先跑OpenCV/PInvoke实现,后2次,先跑C#实现,单位皆为ms。

图像1,大小:485×342

A: 5    3    5   3
B: 41   5    6   2

图像2,大小:1845×611

A:25  23    23   23  
B:23  34    20   21  

图像3,大小:3888×2592

A:209  210  211  210
B:185  188  191  185

从测试结果可以看出,C# 和 OpenCV/PInvoke的性能极为接近。

4. 进一步改进性能

偏色、高光检测等不需要多么准确的Rgb=>Lab转换。如果把彩色图像的每个通道用4 bit来表示,则一共有 4096 种颜色,完全可以用查表方式来加速计算。用一个Lab24数组来表示Rgb24到Lab24空间的映射:

Lab24[] ColorMap

首先初始化ColorMap:

ColorMap = new Lab24[4096];
for (int r = 0; r < 16; r++)
{
    for (int g = 0; g < 16; g++)
    {
        for (int b = 0; b < 16; b++)
        {
            Rgb24 rgb = new Rgb24(r * 16, g * 16, b * 16);
            Lab24 lab = Lab24.CreateFrom(rgb);
            ColorMap[(r << 8) + (g << 4) + b] = lab;
        }
    }
}

然后,查表进行转换:

private unsafe ImageLab24 ConvertToImageLab24(ImageRgb24 img)
{
    ImageLab24 lab = new ImageLab24(img.Width, img.Height);
    Lab24* labStart = lab.Start;
    Rgb24* rgbStart = img.Start;
    Rgb24* rgbEnd = img.Start + img.Length;
    while (rgbStart != rgbEnd)
    {
        Rgb24 rgb = *rgbStart;
        *labStart = ColorMap[(((int)(rgb.Red) >> 4) << 8) + (((int)(rgb.Green) >> 4) << 4) + ((int)(rgb.Blue) >> 4) ];
        rgbStart++;
        labStart++;
    }
    return lab;
}

下面测试(C)查表计算的性能,结果和(A)C#实现与(B)C实现放在一起做对比。

图像1,大小:485×342

A: 5    3    5   3
B: 41   5    6   2
C: 3    2    2    2

图像2,大小:1845×611

A:25  23    23   23  
B:23  34    20   21  
C:  15   15   15   15

图像3,大小:3888×2592

A:209  210  211  210
B:185  188  191  185
C:  136  134  135  135

5. 原地进行变换

还可以进一步提高性能,因为Rgb24和Lab24大小一样,可以在原地进行Rgb24=>Lab24的变换。相应代码如下:

Rgb24[] ColorMapInSpace
...           
ColorMap = new Lab24[4096];
ColorMapInSpace = new Rgb24[4096];
for (int r = 0; r < 16; r++)
{
    for (int g = 0; g < 16; g++)
    {
        for (int b = 0; b < 16; b++)
        {
            Rgb24 rgb = new Rgb24(r * 16, g * 16, b * 16);
            Lab24 lab = Lab24.CreateFrom(rgb);
            ColorMap[(r << 8) + (g << 4) + b] = lab;
            ColorMapInSpace[(r << 8) + (g << 4) + b] = new Rgb24(lab.L,lab.A,lab.B);
        }
    }
}

private unsafe void ConvertToImageLab24InSpace(ImageRgb24 img)
{
    Rgb24* rgbStart = img.Start;
    Rgb24* rgbEnd = img.Start + img.Length;
    while (rgbStart != rgbEnd)
    {
        Rgb24 rgb = *rgbStart;
        *rgbStart = ColorMapInSpace[(((int)(rgb.Red) >> 4) << 8) + (((int)(rgb.Green) >> 4) << 4) + ((int)(rgb.Blue) >> 4)];
        rgbStart++;
    }
}

下面测试D(原地查表变换)的性能,结果和(A)C#实现、(B)C实现、(C)查表计算进行比较:

图像1,大小:485×342

A: 5    3    5   3
B: 41   5    6   2
C: 3    2    2    2
D: 2    1    2    1

图像2,大小:1845×611

A:25  23    23   23  
B:23  34    20   21  
C:  15   15   15   15 
D:  13   13   13   13

图像3,大小:3888×2592

A:209  210  211  210
B:185  188  191  185
C:  136  134  135  135
D:  117  118  122  117

6. 为什么用C#而不是C/C++

经常有人问,你为什么用C#而不用C/C++写图像处理程序。原因如下:

(1)C# 打开unsafe后,写的程序性能非常接近 C 程序的性能(当然,用不了SIMD是个缺陷。mono暂时不考虑。可通过挂接一个轻量级的C库来解决。);

(2)写C#代码比写C代码爽多了快多了(命名空间、不用管头文件、快速编译、重构、生成API文档 ……);

(3)庞大的.Net Framework是强有力的后盾。比如,客户想看演示,用Asp.Net写个页面,传个图片给后台,处理了显示出来。还有那些非性能攸关的地方,可以大量使用.Net Framework中的类,大幅度减少开发时间;

(4)结合强大的WPF,可以快速实现复杂的功能

(5)大量的时间在算法研究、实现和优化上,用C#可以把那些无关的惹人烦的事情给降到最小,所牺牲的只是一丁点儿性能。如果生产平台没有.net环境,将C#代码转换为C/C++代码也很快。

====

补充测试VC 9.0 版本

VC 实现与 C# 实现略有区别,C#版本RGB,Lab使用struct来表示,VC下直接用的三个Byte Channel来表示,然后以 redChannel, greenChannel, blueChannel 来代表不同的 Channel Offset。以 nChannel 代表 Channel 数量。VC下有Stride,C#下无Stride。查表实现也和C#版本有区别,直接使用的是静态的表。O2优化。

E: 非查表实现

void
::ImageQualityDetector::ConvertToLab(Orc::ImageInfo &img)
{
    static unsigned short icvLabCubeRootTab[] = {
        0,161,203……        };

    const float labXr_32f = 0.433953f /* = xyzXr_32f / 0.950456 */;
    const float labXg_32f = 0.376219f /* = xyzXg_32f / 0.950456 */;
    const float labXb_32f = 0.189828f /* = xyzXb_32f / 0.950456 */;

    const float labYr_32f = 0.212671f /* = xyzYr_32f */;
    const float labYg_32f = 0.715160f /* = xyzYg_32f */;
    const float labYb_32f = 0.072169f /* = xyzYb_32f */;

    const float labZr_32f = 0.017758f /* = xyzZr_32f / 1.088754 */;
    const float labZg_32f = 0.109477f /* = xyzZg_32f / 1.088754 */;
    const float labZb_32f = 0.872766f /* = xyzZb_32f / 1.088754 */;

    const float labRx_32f = 3.0799327f  /* = xyzRx_32f * 0.950456 */;
    const float labRy_32f = (-1.53715f) /* = xyzRy_32f */;
    const float labRz_32f = (-0.542782f)/* = xyzRz_32f * 1.088754 */;

    const float labGx_32f = (-0.921235f)/* = xyzGx_32f * 0.950456 */;
    const float labGy_32f = 1.875991f   /* = xyzGy_32f */ ;
    const float labGz_32f = 0.04524426f /* = xyzGz_32f * 1.088754 */;

    const float labBx_32f = 0.0528909755f /* = xyzBx_32f * 0.950456 */;
    const float labBy_32f = (-0.204043f)  /* = xyzBy_32f */;
    const float labBz_32f = 1.15115158f   /* = xyzBz_32f * 1.088754 */;

    const float labT_32f = 0.008856f;

    const int lab_shift = 10;

    const float labLScale2_32f = 903.3f;

    const int labXr = (int)((labXr_32f) * (1 << (lab_shift)) + 0.5);
    const int labXg = (int)((labXg_32f) * (1 << (lab_shift)) + 0.5);
    const int labXb = (int)((labXb_32f) * (1 << (lab_shift)) + 0.5);

    const int labYr = (int)((labYr_32f) * (1 << (lab_shift)) + 0.5);
    const int labYg = (int)((labYg_32f) * (1 << (lab_shift)) + 0.5);
    const int labYb = (int)((labYb_32f) * (1 << (lab_shift)) + 0.5);

    const int labZr = (int)((labZr_32f) * (1 << (lab_shift)) + 0.5);
    const int labZg = (int)((labZg_32f) * (1 << (lab_shift)) + 0.5);
    const int labZb = (int)((labZb_32f) * (1 << (lab_shift)) + 0.5);

    const float labLScale_32f = 116.0f;
    const float labLShift_32f = 16.0f;

    const int labSmallScale = (int)((31.27 /* labSmallScale_32f*(1<<lab_shift)/255 */ ) * (1 << (lab_shift)) + 0.5);

    const int labSmallShift = (int)((141.24138 /* labSmallScale_32f*(1<<lab) */ ) * (1 << (lab_shift)) + 0.5);

    const int labT = (int)((labT_32f * 255) * (1 << (lab_shift)) + 0.5);

    const int labLScale = (int)((295.8) * (1 << (lab_shift)) + 0.5);
    const int labLShift = (int)((41779.2) * (1 << (lab_shift)) + 0.5);
    const int labLScale2 = (int)((labLScale2_32f * 0.01) * (1 << (lab_shift)) + 0.5);

    int width = img.Width;
    int height = img.Height;
    int nChannel = img.NChannel;
    int redChannel = img.RedChannel;
    int greenChannel = img.GreenChannel;
    int blueChannel = img.BlueChannel;
    int x, y, z;
    int l, a, b;
    bool flag;

    for(int h = 0; h < height; h++)
    {
        byte *line = img.GetLine(h);
        for(int w = 0; w < width; w++)
        {
            int red = line[redChannel];
            int green = line[greenChannel];
            int blue = line[blueChannel];

            x = blue * labXb + green * labXg + red * labXr;
            y = blue * labYb + green * labYg + red * labYr;
            z = blue * labZb + green * labZg + red * labZr;

            flag = x > labT;

            x = (((x) + (1 << ((lab_shift) - 1))) >> (lab_shift));

            if (flag)
                x = icvLabCubeRootTab[x];
            else
                x = (((x * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift));

            flag = z > labT;
            z = (((z) + (1 << ((lab_shift) - 1))) >> (lab_shift));

            if (flag == true)
                z = icvLabCubeRootTab[z];
            else
                z = (((z * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift));

            flag = y > labT;
            y = (((y) + (1 << ((lab_shift) - 1))) >> (lab_shift));

            if (flag == true)
            {
                y = icvLabCubeRootTab[y];
                l = (((y * labLScale - labLShift) + (1 << ((2 * lab_shift) - 1))) >> (2 * lab_shift));
            }
            else
            {
                l = (((y * labLScale2) + (1 << ((lab_shift) - 1))) >> (lab_shift));
                y = (((y * labSmallScale + labSmallShift) + (1 << ((lab_shift) - 1))) >> (lab_shift));
            }

            a = (((500 * (x - y)) + (1 << ((lab_shift) - 1))) >> (lab_shift)) + 129;
            b = (((200 * (y - z)) + (1 << ((lab_shift) - 1))) >> (lab_shift)) + 128;

            l = l > 255 ? 255 : l < 0 ? 0 : l;
            a = a > 255 ? 255 : a < 0 ? 0 : a;
            b = b > 255 ? 255 : b < 0 ? 0 : b;

            int index = 3 * (((red >> 4) << 8) + ((green >> 4) << 4) + (blue >> 4)) ;
            line[0] = (byte)l;
            line[1] = (byte)a;
            line[2] = (byte)b;

            line += nChannel;
        }
    }
}

F: 查表实现

void
::ImageQualityDetector::FastConvertToLab(Orc::ImageInfo &img)
{
    static const byte Rgb2LabSmallTable[] = {
    0,    129,    128 ……
    };

    int width = img.Width;
    int height = img.Height;
    int nChannel = img.NChannel;
    int redChannel = img.RedChannel;
    int greenChannel = img.GreenChannel;
    int blueChannel = img.BlueChannel;
    for(int h = 0; h < height; h++)
    {
        byte *line = img.GetLine(h);
        for(int w = 0; w < width; w++)
        {
            int red = line[redChannel];
            int green = line[greenChannel];
            int blue = line[blueChannel];
            int index = 3 * (((red >> 4) << 8) + ((green >> 4) << 4) + (blue >> 4)) ;
            line[0] = Rgb2LabSmallTable[index];
            line[1] = Rgb2LabSmallTable[index + 1];
            line[2] = Rgb2LabSmallTable[index + 2];
            line += nChannel;
        }
    }
}

测试结果:

图像2,大小:1845×611

A:25  23    23   23  
B:23  34    20   21  
C:  15   15   15   15 
D:  13   13   13   13
E:  32   30   37   37
F:  15    10   13  11

图像3,大小:3888×2592

A:209  210  211  210
B:185  188  191  185
C:  136  134  135  135
D:  117  118  122  117
E:  242  240  243  239
F:  70    69    67    67

====

补充测试:C# 下查表实现(Byte数组)

G: C#下直接查找Byte数组,相关代码

static byte[] Rgb2LabSmallTable = new byte[] {
    0,    129,    128, … }

private unsafe void ConvertToImageLab24Fast(ImageRgb24 img)
{
    Rgb24* rgbStart = img.Start;
    Rgb24* rgbEnd = img.Start + img.Length;
    while (rgbStart != rgbEnd)
    {
        Rgb24 rgb = *rgbStart;
        int index = (((int)(rgb.Red) >> 4) << 8) + (((int)(rgb.Green) >> 4) << 4) + ((int)(rgb.Blue) >> 4);
        rgbStart->Red = Rgb2LabSmallTable[index];
        rgbStart->Green = Rgb2LabSmallTable[index+1];
        rgbStart->Blue = Rgb2LabSmallTable[index+2];
        rgbStart++;
    }
}

测试结果:

图像2,大小:1845×611

A:25  23    23   23  
B:23  34    20   21  
C:  15   15   15   15 
D:  13   13   13   13
E:  32   30   37   37
F:  15    10   13  11
G:  12    11   13  11

图像3,大小:3888×2592

A:209  210  211  210
B:185  188  191  185
C:  136  134  135  135
D:  117  118  122  117
E:  242  240  243  239
F:  70    69    67    67
G:  64    64    65    64

====

补充测试:同一种实现下的C#和VC性能对比,附下载

下面消除两种语言的测试区别,C#版本查表时使用指针而非数组,VC下使用无Stride的Rgb24,相关测试代码见 下载链接

这又形成了4个测试用例:

H- C#,非查表;I-C#,查表; J-C++,非查表; K-C++,查表

C# 版为 .Net 4.0, VS2010 ,代码中选择快速一项为测试I,不选择为测试H。

C++版 - VS2008。选择快速一项为测试K,不选择为测试J。

测试结果:

图像2,大小:1845×611

H: 31  29  36  32
I:  10  10  10  10
J:  39  33  33  30
K:  9    8    8    8

图像3,大小:3888×2592

H: 195  194  194  195
I:  53    52    51    52
J: 220  218  218  222
K: 41   42    41   41

结论:

C#下图像开发是很给力的!还在犹豫什么呢?
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: