您的位置:首页 > Web前端 > HTML

HtmlParser设计解析(1) - 解析器模式(Interpreter)

2010-04-27 21:42 411 查看

HtmlParser设计解析(1) - 解析器模式(Interpreter)

对于HtmlParser的使用,这方面的介绍很多,而且详细。前段时间我将HtmlParser的源码读了一篇,在此,总结下其HtmlParser的设计,跟大家交流,我们只关注是设计。 一、Filter设计

NodeFilter 是htmlParser主要的提取节点的一种方式,其结构灵活,通过组合解释器查找页面上的任一个节点。

1、先看个测试用例:

Java代码 /**
* Test and filtering.
*/
public void testAnd () throws ParserException
{
String guts;
String html;
NodeList list;

guts = "<body>Now is the <a id=one><b>time</b></a> for all good <a id=two><b>men</b></a>..</body>";
html = "<html>" + guts + "</html>";
createParser (html);
list = parser.extractAllNodesThatMatch (
new AndFilter (
new HasChildFilter (
new TagNameFilter ("b")),
new HasChildFilter (
new StringFilter ("men")))
);
assertEquals ("only one element", 1, list.size ());
assertType ("should be LinkTag", LinkTag.class, list.elementAt (0));
LinkTag link = (LinkTag)list.elementAt (0);
assertEquals ("attribute value", "two", link.getAttribute ("id"));
}
/**      * Test and filtering.      */     public void testAnd () throws ParserException     {         String guts;         String html;         NodeList list;          guts = "<body>Now is the <a id=one><b>time</b></a> for all good <a id=two><b>men</b></a>..</body>";         html = "<html>" + guts + "</html>";         createParser (html);         list = parser.extractAllNodesThatMatch (             new AndFilter (                 new HasChildFilter (                     new TagNameFilter ("b")),                 new HasChildFilter (                     new StringFilter ("men")))                 );         assertEquals ("only one element", 1, list.size ());         assertType ("should be LinkTag", LinkTag.class, list.elementAt (0));         LinkTag link = (LinkTag)list.elementAt (0);         assertEquals ("attribute value", "two", link.getAttribute ("id"));     }


2、NodeFilter 结构图





3、所使用的设计模式

NodeFilter接口的主要作用是判断该节点是否是客户端所查找的节点,返回一个boolean值。从上图中也可以看出,其接口中只有一个方法:

boolean accept (Node node); //接受一个Node类型的参数

在这,HtmlParser作者采用的是解析器模式来实现这个模式。

我们先了解下解释器模式,然后再结合作者的源码来理解解释器模式,体会作者的设计灵活性。

Interpreter模式可以定义出其方法的一种表示,并同时提供一个解释器。客户端可以使用解释器来解释这个语言中的句子。

其中,Interpreter模式的几个要点:

1、Interpreter模式应用场合是Interpreter模式应用中的难点,只有满足“业务规则频繁变化,且类似的模式不断重复出现,并且容易抽象为语法规则问题”才适合使用Interpreter模式

2、使用Interpreter模式来表示方法规则,从而可以使用面向对象技艺来方便地“扩展”方法。

4、HtmlParser NodeFilter 解释器模式的应用

抽象表达式角色:

Java代码 public interface NodeFilter extends Serializable, Cloneable {
/**
* Predicate to determine whether or not to keep the given node.
* The behaviour based on this outcome is determined by the context
* in which it is called. It may lead to the node being added to a list
* or printed out. See the calling routine for details.
* @return <code>true</code> if the node is to be kept, <code>false</code>
* if it is to be discarded.
* @param node The node to test.
*/
boolean accept (Node node);
}
public interface NodeFilter extends Serializable, Cloneable {     /**      * Predicate to determine whether or not to keep the given node.      * The behaviour based on this outcome is determined by the context      * in which it is called. It may lead to the node being added to a list      * or printed out. See the calling routine for details.      * @return <code>true</code> if the node is to be kept, <code>false</code>      * if it is to be discarded.      * @param node The node to test.      */     boolean accept (Node node); }


下面看一个逻辑“与”的操作的实现,这里表示二个过滤器通过逻辑与操作给出一个boolean表达式的操作。代码如下:

Java代码 /**
* Accepts nodes matching all of its predicate filters (AND operation).
*/
public class AndFilter implements NodeFilter {
protected NodeFilter[] mPredicates;

/**
* Creates an AndFilter that accepts nodes acceptable to both filters.
*
* @param left One filter.
* @param right The other filter.
*/
public AndFilter(NodeFilter left, NodeFilter right) {
NodeFilter[] predicates;

predicates = new NodeFilter[2];
predicates[0] = left;
predicates[1] = right;
setPredicates(predicates);
}

public void setPredicates(NodeFilter[] predicates) {
if (null == predicates)
predicates = new NodeFilter[0];
mPredicates = predicates;
}

public boolean accept(Node node) {
boolean ret;

ret = true;

for (int i = 0; ret && (i < mPredicates.length); i++)
if (!mPredicates[i].accept(node)) // 这里调用本身构造的解释器再进行判断
ret = false;

return (ret);
}
}
/**  * Accepts nodes matching all of its predicate filters (AND operation).  */ public class AndFilter implements NodeFilter { 	protected NodeFilter[] mPredicates;  	/** 	 * Creates an AndFilter that accepts nodes acceptable to both filters. 	 *  	 * @param left One filter. 	 * @param right The other filter. 	 */ 	public AndFilter(NodeFilter left, NodeFilter right) { 		NodeFilter[] predicates;  		predicates = new NodeFilter[2]; 		predicates[0] = left; 		predicates[1] = right; 		setPredicates(predicates); 	}  	public void setPredicates(NodeFilter[] predicates) { 		if (null == predicates) 			predicates = new NodeFilter[0]; 		mPredicates = predicates; 	}  	public boolean accept(Node node) { 		boolean ret;  		ret = true;  		for (int i = 0; ret && (i < mPredicates.length); i++) 			if (!mPredicates[i].accept(node)) // 这里调用本身构造的解释器再进行判断 				ret = false;  		return (ret); 	} }


再来看一个测试用例中的另外一些过滤操作,HasChildFilter 其代码如下:

Java代码 public class HasChildFilter implements NodeFilter {
protected NodeFilter mChildFilter;

protected boolean mRecursive;

public HasChildFilter(NodeFilter filter) {
this(filter, false);
}

public HasChildFilter(NodeFilter filter, boolean recursive) {
mChildFilter = filter;
mRecursive = recursive;
}

public boolean accept(Node node) {
CompositeTag tag; // ?1
NodeList children;
boolean ret;

ret = false;
if (node instanceof CompositeTag) {
tag = (CompositeTag) node;
children = tag.getChildren();
if (null != children) {
for (int i = 0; !ret && i < children.size(); i++)
if (mChildFilter.accept(children.elementAt(i))) // 判断是否包括该元素
ret = true;
// do recursion after all children are checked
// to get breadth first traversal
if (!ret && mRecursive) // 搜索下层节点
for (int i = 0; !ret && i < children.size(); i++)
if (accept(children.elementAt(i)))
ret = true;
}
}

return (ret);
}
}
public class HasChildFilter implements NodeFilter { 	protected NodeFilter mChildFilter;  	protected boolean mRecursive;  	public HasChildFilter(NodeFilter filter) { 		this(filter, false); 	}  	public HasChildFilter(NodeFilter filter, boolean recursive) { 		mChildFilter = filter; 		mRecursive = recursive; 	}  	public boolean accept(Node node) { 		CompositeTag tag; // ?1 		NodeList children; 		boolean ret;  		ret = false; 		if (node instanceof CompositeTag) { 			tag = (CompositeTag) node; 			children = tag.getChildren(); 			if (null != children) { 				for (int i = 0; !ret && i < children.size(); i++) 					if (mChildFilter.accept(children.elementAt(i))) // 判断是否包括该元素 						ret = true; 				// do recursion after all children are checked 				// to get breadth first traversal 				if (!ret && mRecursive) // 搜索下层节点 					for (int i = 0; !ret && i < children.size(); i++) 						if (accept(children.elementAt(i))) 							ret = true; 			} 		}  		return (ret); 	} }


TagNameFilter 的代码如下:

Java代码 public class TagNameFilter implements NodeFilter {
protected String mName;

public TagNameFilter(String name) {
mName = name.toUpperCase(Locale.ENGLISH);
}

public boolean accept(Node node) {
return ((node instanceof Tag)
&& !((Tag) node).isEndTag()
&& ((Tag) node).getTagName().equals(mName));
}
}
public class TagNameFilter implements NodeFilter { 	protected String mName;  	public TagNameFilter(String name) { 		mName = name.toUpperCase(Locale.ENGLISH); 	}  	public boolean accept(Node node) { 		return ((node instanceof Tag)  				&& !((Tag) node).isEndTag()  				&& ((Tag) node).getTagName().equals(mName)); 	} }
NodeFilter的另外13个子类,都按此实现包装不同的业务逻辑。并且非常容易增加其子类来实现新的“文法”规则。

客户端则可灵活组装解释器,执行解释。非常灵活,这也满足用户自定义逻辑去查找HTML文件中的各个节点。

至于HtmlParser是如何人存储HTML结构,在此不做深挖,只需要知道将提供一个迭代器可遍历所有的节点即可(其实HtmlParser中是通过遍历各个字符来映射Node对象及装载各字符的坐标(列数,行数))。

5、HtmlParser中客户端的调用

现在来看看测试用例中的Parser类中extractAllNodesThatMatch()。

Parser:

Java代码 public class Parser implements Serializable {
... ....

/**
* Extract all nodes matching the given filter.
*/
public NodeList extractAllNodesThatMatch (NodeFilter filter) throws ParserException {
NodeIterator e;
NodeList ret;

ret = new NodeList ();
for (e = elements (); e.hasMoreNodes (); ) // elements()返回一个简单的迭代器,遍历所有节点
e.nextNode ().collectInto (ret, filter);

return (ret);
}
... ...
}
public class Parser implements Serializable {     ... ....      /**      * Extract all nodes matching the given filter.     */     public NodeList extractAllNodesThatMatch (NodeFilter filter) throws ParserException {         NodeIterator e;         NodeList ret;          ret = new NodeList ();         for (e = elements (); e.hasMoreNodes (); ) // elements()返回一个简单的迭代器,遍历所有节点             e.nextNode ().collectInto (ret, filter);          return (ret);     }     ... ... }
AbstractNode:

Java代码 public abstract class AbstractNode implements Node, Serializable {
... ...
public void collectInto (NodeList list, NodeFilter filter) {
if (filter.accept (this))
list.add (this);
}
... ...
}
public abstract class AbstractNode implements Node, Serializable {    ... ...     public void collectInto (NodeList list, NodeFilter filter) {         if (filter.accept (this))             list.add (this);     }     ... ... }


Java代码 public class CompositeTag extends TagNode { //TagNode extends AbstractNode, AbstractNode implements Node
... ...
public void collectInto (NodeList list, NodeFilter filter) {
super.collectInto (list, filter); //AbstractNode collectInto
for (SimpleNodeIterator e = children(); e.hasMoreNodes ();) {
// e.nextNode() 返回一个Node类型 e.nextNode ().collectInto() = this.collectInto() 递归遍历所有节点,并对每个节点进行过滤,将符合条件的节点添加至结果集中(NodeList)
e.nextNode ().collectInto (list, filter);
}
if ((null != getEndTag ()) && (this != getEndTag ()))
getEndTag ().collectInto (list, filter);
}
... ...
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: