您的位置:首页 > 运维架构 > Linux

[转贴] u-boot 分析 - <节选> [嵌入式Linux系统开发技术详解-基于ARM]

2009-09-10 11:27 1026 查看

6.1 Bootloader

对于计算机系统来说,从开机上电到操作系统启动需要一个引导过程。嵌入式Linux系统同样离不开引导程序,这个引导程序就叫作Bootloader。

6.1.1 Bootloader介绍

Bootloader是在操作系统运行之前执行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射表,从而建立适当的系统软硬件环境,为最终调用操作系统内核做好准备。

对于嵌入式系统,Bootloader是基于特定硬件平台来实现的。因此,几乎不可能为所有的嵌入式系统建立一个通用的Bootloader,不同的处理器架构都有不同的Bootloader。Bootloader不但依赖于CPU的体系结构,而且依赖于嵌入式系统板级设备的配置。对于2块不同的嵌入式板而言,即使它们使用同一种处理器,要想让运行在一块板子上的Bootloader程序也能运行在另一块板子上,一般也都需要修改Bootloader的源程序。

反过来,大部分Bootloader仍然具有很多共性,某些Bootloader也能够支持多种体系结构的嵌入式系统。例如,U-Boot就同时支持PowerPC、ARM、MIPS和X86等体系结构,支持的板子有上百种。通常,它们都能够自动从存储介质上启动,都能够引导操作系统启动,并且大部分都可以支持串口和以太网接口。

本章将对各种Bootloader总结分类,分析它们的共同特点。以U-Boot为例,详细讨论Bootloader的设计与实现。

6.1.2 Bootloader的启动

Linux系统是通过Bootloader引导启动的。一上电,就要执行Bootloader来初始化系统。可以通过第4章的Linux启动过程框图回顾一下。

系统加电或复位后,所有CPU都会从某个地址开始执行,这是由处理器设计决定的。比如,X86的复位向量在高地址端,ARM处理器在复位时从地址0x00000000取第一条指令。嵌入式系统的开发板都要把板上ROM或Flash映射到这个地址。因此,必须把Bootloader程序存储在相应的Flash位置。系统加电后,CPU将首先执行它。

主机和目标机之间一般有串口可以连接,Bootloader软件通常会通过串口来输入输出。例如:输出出错或者执行结果信息到串口终端,从串口终端读取用户控制命令等。

Bootloader启动过程通常是多阶段的,这样既能提供复杂的功能,又有很好的可移植性。例如:从Flash启动的Bootloader多数是两阶段的启动过程。从后面U-Boot的内容可以详细分析这个特性。

大多数Bootloader都包含2种不同的操作模式:本地加载模式和远程下载模式。这2种操作模式的区别仅对于开发人员才有意义,也就是不同启动方式的使用。从最终用户的角度看,Bootloader的作用就是用来加载操作系统,而并不存在所谓的本地加载模式与远程下载模式的区别。

因为Bootloader的主要功能是引导操作系统启动,所以我们详细讨论一下各种启动方式的特点。

1.网络启动方式

这种方式开发板不需要配置较大的存储介质,跟无盘工作站有点类似。但是使用这种启动方式之前,需要把Bootloader安装到板上的EPROM或者Flash中。Bootloader通过以太网接口远程下载Linux内核映像或者文件系统。第4章介绍的交叉开发环境就是以网络启动方式建立的。这种方式对于嵌入式系统开发来说非常重要。

使用这种方式也有前提条件,就是目标板有串口、以太网接口或者其他连接方式。串口一般可以作为控制台,同时可以用来下载内核影像和RAMDISK文件系统。串口通信传输速率过低,不适合用来挂接NFS文件系统。所以以太网接口成为通用的互连设备,一般的开发板都可以配置10M以太网接口。

对于PDA等手持设备来说,以太网的RJ-45接口显得大了些,而USB接口,特别是USB的迷你接口,尺寸非常小。对于开发的嵌入式系统,可以把USB接口虚拟成以太网接口来通讯。这种方式在开发主机和开发板两端都需要驱动程序。

另外,还要在服务器上配置启动相关网络服务。Bootloader下载文件一般都使用TFTP网络协议,还可以通过DHCP的方式动态配置IP地址。

DHCP/BOOTP服务为Bootloader分配IP地址,配置网络参数,然后才能够支持网络传输功能。如果Bootloader可以直接设置网络参数,就可以不使用DHCP。

TFTP服务为Bootloader客户端提供文件下载功能,把内核映像和其他文件放在/tftpboot目录下。这样Bootloader可以通过简单的TFTP协议远程下载内核映像到内存。如图6.1所示。

0 && image.height>0){if(image.width>=700){this.width=700;this.height=image.height*700/image.width;}}" alt="" src="http://book.csdn.net/BookFiles/130/06/image004.gif" width="349" height="167">

图6.1 网络启动示意图

大部分引导程序都能够支持网络启动方式。例如:BIOS的PXE(Preboot Execution Environment)功能就是网络启动方式;U-Boot也支持网络启动功能。

2.磁盘启动方式

传统的Linux系统运行在台式机或者服务器上,这些计算机一般都使用BIOS引导,并且使用磁盘作为存储介质。如果进入BIOS设置菜单,可以探测处理器、内存、硬盘等设备,可以设置BIOS从软盘、光盘或者某块硬盘启动。也就是说,BIOS并不直接引导操作系统。那么在硬盘的主引导区,还需要一个Bootloader。这个Bootloader可以从磁盘文件系统中把操作系统引导起来。

Linux传统上是通过LILO(LInux LOader)引导的,后来又出现了GNU的软件GRUB(GRand Unified Bootloader)。这2种Bootloader广泛应用在X86的Linux系统上。你的开发主机可能就使用了其中一种,熟悉它们有助于配置多种系统引导功能。

LILO软件工程是由Werner Almesberger创建,专门为引导Linux开发的。现在LILO的维护者是John Coffman,最新版本下载站点:http://lilo.go.dyndns.org。LILO有详细的文档,例如LILO套件中附带使用手册和参考手册。此外,还可以在LDP的“LILO mini-HOWTO”中找到LILO的使用指南。

GRUB是GNU计划的主要bootloader。GRUB最初是由Erich Boleyn为GNU Mach操作系统撰写的引导程序。后来有Gordon Matzigkeit和Okuji Yoshinori接替Erich的工作,继续维护和开发GRUB。GRUB的网站http://www.gnu.org/software/grub/上有对套件使用的说明文件,叫作《GRUB manual》。GRUB能够使用TFTP和BOOTP或者DHCP通过网络启动,这种功能对于系统开发过程很有用。

除了传统的Linux系统上的引导程序以外,还有其他一些引导程序,也可以支持磁盘引导启动。例如:LoadLin可以从DOS下启动Linux;还有ROLO、LinuxBIOS,U-Boot也支持这种功能。

3.Flash启动方式

大多数嵌入式系统上都使用Flash存储介质。Flash有很多类型,包括NOR Flash、NAND Flash和其他半导体盘。其中,NOR Flash(也就是线性Flash)使用最为普遍。

NOR Flash可以支持随机访问,所以代码是可以直接在Flash上执行的。Bootloader一般是存储在Flash芯片上的。另外,Linux内核映像和RAMDISK也可以存储在Flash上。通常需要把Flash分区使用,每个区的大小应该是Flash擦除块大小的整数倍。图6.2是Bootloader和内核映像以及文件系统的分区表。

0 && image.height>0){if(image.width>=700){this.width=700;this.height=image.height*700/image.width;}}" alt="" src="http://book.csdn.net/BookFiles/130/06/image005.gif" width="323" border="0" height="95">

图6.2 Flash存储示意图

Bootloader一般放在Flash的底端或者顶端,这要根据处理器的复位向量设置。要使Bootloader的入口位于处理器上电执行第一条指令的位置。

接下来分配参数区,这里可以作为Bootloader的参数保存区域。

再下来内核映像区。Bootloader引导Linux内核,就是要从这个地方把内核映像解压到RAM中去,然后跳转到内核映像入口执行。

然后是文件系统区。如果使用Ramdisk文件系统,则需要Bootloader把它解压到RAM中。如果使用JFFS2文件系统,将直接挂接为根文件系统。这两种文件系统将在第12章详细讲解。

最后还可以分出一些数据区,这要根据实际需要和Flash大小来考虑了。

这些分区是开发者定义的,Bootloader一般直接读写对应的偏移地址。到了Linux内核空间,可以配置成MTD设备来访问Flash分区。但是,有的Bootloader也支持分区的功能,例如:Redboot可以创建Flash分区表,并且内核MTD驱动可以解析出redboot的分区表。

除了NOR Flash,还有NAND Flash、Compact Flash、DiskOnChip等。这些Flash具有芯片价格低,存储容量大的特点。但是这些芯片一般通过专用控制器的I/O方式来访问,不能随机访问,因此引导方式跟NOR Flash也不同。在这些芯片上,需要配置专用的引导程序。通常,这种引导程序起始的一段代码就把整个引导程序复制到RAM中运行,从而实现自举启动,这跟从磁盘上启动有些相似。

6.1.3 Bootloader的种类

嵌入式系统世界已经有各种各样的Bootloader,种类划分也有多种方式。除了按照处理器体系结构不同划分以外,还有功能复杂程度的不同。

首先区分一下“Bootloader”和“Monitor”的概念。严格来说,“Bootloader”只是引导设备并且执行主程序的固件;而“Monitor”还提供了更多的命令行接口,可以进行调试、读写内存、烧写Flash、配置环境变量等。“Monitor”在嵌入式系统开发过程中可以提供很好的调试功能,开发完成以后,就完全设置成了一个“Bootloader”。所以,习惯上大家把它们统称为Bootloader。

表6.1列出了Linux的开放源码引导程序及其支持的体系结构。表中给出了X86 ARM PowerPC体系结构的常用引导程序,并且注明了每一种引导程序是不是“Monitor”。

表6.1 开放源码的Linux 引导程序

Bootloader

Monitor

描 述

x86

ARM

PowerPC

LILO



Linux磁盘引导程序







GRUB



GNU的LILO替代程序







Loadlin



从DOS引导Linux







ROLO



从ROM引导Linux而不需要BIOS







Etherboot



通过以太网卡启动Linux系统的固件







LinuxBIOS



完全替代BUIS的Linux引导程序







BLOB



LART等硬件平台的引导程序







U-boot



通用引导程序







RedBoot



基于eCos的引导程序







对于每种体系结构,都有一系列开放源码Bootloader可以选用。

(1)X86

X86的工作站和服务器上一般使用LILO和GRUB。LILO是Linux发行版主流的Bootloader。不过Redhat Linux发行版已经使用了GRUB,GRUB比LILO有更有好的显示界面,使用配置也更加灵活方便。

在某些X86嵌入式单板机或者特殊设备上,会采用其他Bootloader,例如:ROLO。这些Bootloader可以取代BIOS的功能,能够从FLASH中直接引导Linux启动。现在ROLO支持的开发板已经并入U-Boot,所以U-Boot也可以支持X86平台。

(2)ARM

ARM处理器的芯片商很多,所以每种芯片的开发板都有自己的Bootloader。结果ARM bootloader也变得多种多样。最早有为ARM720处理器的开发板的固件,又有了armboot,StrongARM平台的blob,还有S3C2410处理器开发板上的vivi等。现在armboot已经并入了U-Boot,所以U-Boot也支持ARM/XSCALE平台。U-Boot已经成为ARM平台事实上的标准Bootloader。

(3)PowerPC

PowerPC平台的处理器有标准的Bootloader,就是ppcboot。PPCBOOT在合并armboot等之后,创建了U-Boot,成为各种体系结构开发板的通用引导程序。U-Boot仍然是PowerPC平台的主要Bootloader。

(4)MIPS

MIPS公司开发的YAMON是标准的Bootloader,也有许多MIPS芯片商为自己的开发板写了Bootloader。现在,U-Boot也已经支持MIPS平台。

(5)SH

SH平台的标准Bootloader是sh-boot。Redboot在这种平台上也很好用。

(6)M68K

M68K平台没有标准的Bootloader。Redboot能够支持m68k系列的系统。

值得说明的是Redboot,它几乎能够支持所有的体系结构,包括MIPS、SH、M68K等体系结构。Redboot是以eCos为基础,采用GPL许可的开源软件工程。现在由core eCos的开发人员维护,源码下载网站是http://www.ecoscentric.com/snapshots。Redboot的文档也相当完善,有详细的使用手册《RedBoot User’s Guide》。

6.2.1 U-Boot工程简介

最早,DENX软件工程中心的Wolfgang Denk基于8xxrom的源码创建了PPCBOOT工程,并且不断添加处理器的支持。后来,Sysgo Gmbh把ppcboot移植到ARM平台上,创建了ARMboot工程。然后以ppcboot工程和armboot工程为基础,创建了U-Boot工程。

现在U-Boot已经能够支持PowerPC、ARM、X86、MIPS体系结构的上百种开发板,已经成为功能最多、灵活性最强并且开发最积极的开放源码Bootloader。目前仍然由DENX的Wolfgang Denk维护。

U-Boot的源码包可以从sourceforge网站下载,还可以订阅该网站活跃的U-Boot Users邮件论坛,这个邮件论坛对于U-Boot的开发和使用都很有帮助。

U-Boot软件包下载网站:http://sourceforge.net/project/u-boot。

U-Boot邮件列表网站:http://lists.sourceforge.net/lists/listinfo/u-boot-users/。

DENX相关的网站:http://www.denx.de/re/DPLG.html

6.2.2 U-Boot源码结构

从网站上下载得到U-Boot源码包,例如:U-Boot-1.1.2.tar.bz2

解压就可以得到全部U-Boot源程序。在顶层目录下有18个子目录,分别存放和管理不同的源程序。这些目录中所要存放的文件有其规则,可以分为3类。

· 第1类目录与处理器体系结构或者开发板硬件直接相关;

· 第2类目录是一些通用的函数或者驱动程序;

· 第3类目录是U-Boot的应用程序、工具或者文档。

表6.2列出了U-Boot顶层目录下各级目录存放原则。

表6.2 U-Boot的源码顶层目录说明

目 录

特 性

解 释 说 明

board

平台依赖

存放电路板相关的目录文件,例如:RPXlite(mpc8xx)、smdk2410(arm920t)、sc520_cdp(x86) 等目录

cpu

平台依赖

存放CPU相关的目录文件,例如:mpc8xx、ppc4xx、arm720t、arm920t、 xscale、i386等目录

lib_ppc

平台依赖

存放对PowerPC体系结构通用的文件,主要用于实现PowerPC平台通用的函数

目 录

特 性

解 释 说 明

lib_arm

平台依赖

存放对ARM体系结构通用的文件,主要用于实现ARM平台通用的函数

lib_i386

平台依赖

存放对X86体系结构通用的文件,主要用于实现X86平台通用的函数

include

通用

头文件和开发板配置文件,所有开发板的配置文件都在configs目录下

common

通用

通用的多功能函数实现

lib_generic

通用

通用库函数的实现

Net

通用

存放网络的程序

Fs

通用

存放文件系统的程序

Post

通用

存放上电自检程序

drivers

通用

通用的设备驱动程序,主要有以太网接口的驱动

Disk

通用

硬盘接口程序

Rtc

通用

RTC的驱动程序

Dtt

通用

数字温度测量器或者传感器的驱动

examples

应用例程

一些独立运行的应用程序的例子,例如helloworld

tools

工具

存放制作S-Record 或者 U-Boot格式的映像等工具,例如mkimage

Doc

文档

开发使用文档

U-Boot的源代码包含对几十种处理器、数百种开发板的支持。可是对于特定的开发板,配置编译过程只需要其中部分程序。这里具体以S3C2410 arm920t处理器为例,具体分析S3C2410处理器和开发板所依赖的程序,以及U-Boot的通用函数和工具。

6.2.3 U-Boot的编译

U-Boot的源码是通过GCC和Makefile组织编译的。顶层目录下的Makefile首先可以设置开发板的定义,然后递归地调用各级子目录下的Makefile,最后把编译过的程序链接成U-Boot映像。

1.顶层目录下的Makefile

它负责U-Boot整体配置编译。按照配置的顺序阅读其中关键的几行。

每一种开发板在Makefile都需要有板子配置的定义。例如smdk2410开发板的定义如下。

smdk2410_config : unconfig

@./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0

执行配置U-Boot的命令make smdk2410_config,通过./mkconfig脚本生成include/config.
mk的配置文件。文件内容正是根据Makefile对开发板的配置生成的。

ARCH = arm

CPU = arm920t

BOARD = smdk2410

SOC = s3c24x0

上面的include/config.mk文件定义了ARCH、CPU、BOARD、SOC这些变量。这样硬件平台依赖的目录文件可以根据这些定义来确定。SMDK2410平台相关目录如下。

board/smdk2410/

cpu/arm920t/

cpu/arm920t/s3c24x0/

lib_arm/

include/asm-arm/

include/configs/smdk2410.h

再回到顶层目录的Makefile文件开始的部分,其中下列几行包含了这些变量的定义。

# load ARCH, BOARD, and CPU configuration

include include/config.mk

export ARCH CPU BOARD VENDOR SOC

Makefile的编译选项和规则在顶层目录的config.mk文件中定义。各种体系结构通用的规则直接在这个文件中定义。通过ARCH、CPU、BOARD、SOC等变量为不同硬件平台定义不同选项。不同体系结构的规则分别包含在ppc_config.mk、arm_config.mk、mips_config.mk等文件中。

顶层目录的Makefile中还要定义交叉编译器,以及编译U-Boot所依赖的目标文件。

ifeq ($(ARCH),arm)

CROSS_COMPILE = arm-linux- //交叉编译器的前缀

#endif

export CROSS_COMPILE



# U-Boot objects....order is important (i.e. start must be first)

OBJS = cpu/$(CPU)/start.o //处理器相关的目标文件



LIBS = lib_generic/libgeneric.a //定义依赖的目录,每个目录下先把目标文件连接成*.a文件。

LIBS += board/$(BOARDDIR)/lib$(BOARD).a

LIBS += cpu/$(CPU)/lib$(CPU).a

ifdef SOC

LIBS += cpu/$(CPU)/$(SOC)/lib$(SOC).a

endif

LIBS += lib_$(ARCH)/lib$(ARCH).a



然后还有U-Boot映像编译的依赖关系。

ALL = u-boot.srec u-boot.bin System.map

all: $(ALL)

u-boot.srec: u-boot

$(OBJCOPY) ${OBJCFLAGS} -O srec $< $@

u-boot.bin: u-boot

$(OBJCOPY) ${OBJCFLAGS} -O binary $< $@

……

u-boot: depend $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT)

UNDEF_SYM='$(OBJDUMP) -x $(LIBS) \

|sed -n -e 's/.*\(__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\

$(LD) $(LDFLAGS) $$UNDEF_SYM $(OBJS) \

--start-group $(LIBS) $(PLATFORM_LIBS) --end-group \

-Map u-boot.map -o u-boot

Makefile缺省的编译目标为all,包括u-boot.srec、u-boot.bin、System.map。u-boot.srec和u-boot.bin又依赖于U-Boot。U-Boot就是通过ld命令按照u-boot.map地址表把目标文件组装成u-boot。

其他Makefile内容就不再详细分析了,上述代码分析应该可以为阅读代码提供了一个线索。

2.开发板配置头文件

除了编译过程Makefile以外,还要在程序中为开发板定义配置选项或者参数。这个头文件是include/configs/<board_name>.h。<board_name>用相应的BOARD定义代替。

这个头文件中主要定义了两类变量。

一类是选项,前缀是CONFIG_,用来选择处理器、设备接口、命令、属性等。例如:

#define CONFIG_ARM920T 1

#define CONFIG_DRIVER_CS8900 1

另一类是参数,前缀是CFG_,用来定义总线频率、串口波特率、Flash地址等参数。例如:

#define CFG_FLASH_BASE 0x00000000

#define CFG_PROMPT "=>"

3.编译结果

根据对Makefile的分析,编译分为2步。第1步配置,例如:make smdk2410_config;第2步编译,执行make就可以了。

编译完成后,可以得到U-Boot各种格式的映像文件和符号表,如表6.3所示。

表6.3 U-Boot编译生成的映像文件

文 件 名 称

说 明

文 件 名 称

说 明

System.map

U-Boot映像的符号表

u-boot.bin

U-Boot映像原始的二进制格式

u-boot

U-Boot映像的ELF格式

u-boot.srec

U-Boot映像的S-Record格式

U-Boot的3种映像格式都可以烧写到Flash中,但需要看加载器能否识别这些格式。一般u-boot.bin最为常用,直接按照二进制格式下载,并且按照绝对地址烧写到Flash中就可以了。U-Boot和u-boot.srec格式映像都自带定位信息。

4.U-Boot工具

在tools目录下还有些U-Boot的工具。这些工具有的也经常用到。表6.4说明了几种工具的用途。

表6.4 U-Boot的工具

工 具 名 称

说 明

工 具 名 称

说 明

bmp_logo

制作标记的位图结构体

img2srec

转换SREC格式映像

envcrc

校验u-boot内部嵌入的环境变量

mkimage

转换U-Boot格式映像

gen_eth_addr

生成以太网接口MAC地址

updater

U-Boot自动更新升级工具

这些工具都有源代码,可以参考改写其他工具。其中mkimage是很常用的一个工具,Linux内核映像和ramdisk文件系统映像都可以转换成U-Boot的格式。

6.2.4 U-Boot的移植

U-Boot能够支持多种体系结构的处理器,支持的开发板也越来越多。因为Bootloader是完全依赖硬件平台的,所以在新电路板上需要移植U-Boot程序。

开始移植U-Boot之前,先要熟悉硬件电路板和处理器。确认U-Boot是否已经支持新开发板的处理器和I/O设备。假如U-Boot已经支持一块非常相似的电路板,那么移植的过程将非常简单。

移植U-Boot工作就是添加开发板硬件相关的文件、配置选项,然后配置编译。

开始移植之前,需要先分析一下U-Boot已经支持的开发板,比较出硬件配置最接近的开发板。选择的原则是,首先处理器相同,其次处理器体系结构相同,然后是以太网接口等外围接口。还要验证一下这个参考开发板的U-Boot,至少能够配置编译通过。

以S3C2410处理器的开发板为例,U-Boot-1.1.2版本已经支持SMDK2410开发板。我们可以基于SMDK2410移植,那么先把SMDK2410编译通过。

我们以S3C2410开发板fs2410为例说明。移植的过程参考SMDK2410开发板,SMDK2410在U-Boot-1.1.2中已经支持。

移植U-Boot的基本步骤如下。

(1)在顶层Makefile中为开发板添加新的配置选项,使用已有的配置项目为例。

smdk2410_config : unconfig

@./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0

参考上面2行,添加下面2行。

fs2410_config : unconfig

@./mkconfig $(@:_config=) arm arm920t fs2410 NULL s3c24x0

(2)创建一个新目录存放开发板相关的代码,并且添加文件。

board/fs2410/config.mk

board/fs2410/flash.c

board/fs2410/fs2410.c

board/fs2410/Makefile

board/fs2410/memsetup.S

board/fs2410/u-boot.lds

(3)为开发板添加新的配置文件

可以先复制参考开发板的配置文件,再修改。例如:

$cp include/configs/smdk2410.h include/configs/fs2410.h

如果是为一颗新的CPU移植,还要创建一个新的目录存放CPU相关的代码。

(4)配置开发板

$ make fs2410_config

(5)编译U-Boot

执行make命令,编译成功可以得到U-Boot映像。有些错误是跟配置选项是有关系的,通常打开某些功能选项会带来一些错误,一开始可以尽量跟参考板配置相同。

(6)添加驱动或者功能选项

在能够编译通过的基础上,还要实现U-Boot的以太网接口、Flash擦写等功能。

对于FS2410开发板的以太网驱动和smdk2410完全相同,所以可以直接使用。CS8900驱动程序文件如下。

drivers/cs8900.c

drivers/cs8900.h

对于Flash的选择就麻烦多了,Flash芯片价格或者采购方面的因素都有影响。多数开发板大小、型号不都相同。所以还需要移植Flash的驱动。每种开发板目录下一般都有flash.c这个文件,需要根据具体的Flash类型修改。例如:

board/fs2410/flash.c

(7)调试U-Boot源代码,直到U-Boot在开发板上能够正常启动。

调试的过程可能是很艰难的,需要借助工具,并且有些问题可能困扰很长时间。

6.2.5 添加U-Boot命令

U-Boot的命令为用户提供了交互功能,并且已经实现了几十个常用的命令。如果开发板需要很特殊的操作,可以添加新的U-Boot命令。

U-Boot的每一个命令都是通过U_Boot_CMD宏定义的。这个宏在include/command.h头文件中定义,每一个命令定义一个cmd_tbl_t结构体。

#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \

cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}

这样每一个U-Boot命令有一个结构体来描述。结构体包含的成员变量:命令名称、最大参数个数、重复数、命令执行函数、用法、帮助。

从控制台输入的命令是由common/command.c中的程序解释执行的。find_cmd()负责匹配输入的命令,从列表中找出对应的命令结构体。

基于U-Boot命令的基本框架,来分析一下简单的icache操作命令,就可以知道添加新命令的方法。

(1)定义CACHE命令。在include/cmd_confdefs.h中定义了所有U-Boot命令的标志位。

#define CFG_CMD_CACHE 0x00000010ULL /* icache, dcache */

如果有更多的命令,也要在这里添加定义。

(2)实现CACHE命令的操作函数。下面是common/cmd_cache.c文件中icache命令部分的代码。

#if (CONFIG_COMMANDS & CFG_CMD_CACHE)

static int on_off (const char *s)

{ //这个函数解析参数,判断是打开cache,还是关闭cache

if (strcmp(s, "on") == 0) { //参数为“on”

return (1);

} else if (strcmp(s, "off") == 0) { //参数为“off”

return (0);

}

return (-1);

}

int do_icache ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{ //对指令cache的操作函数

switch (argc) {

case 2: /* 参数个数为1,则执行打开或者关闭指令cache操作 */

switch (on_off(argv[1])) {

case 0: icache_disable(); //打开指令cache

break;

case 1: icache_enable (); //关闭指令cache

break;

}

/* FALL TROUGH */

case 1: /* 参数个数为0,则获取指令cache状态*/

printf ("Instruction Cache is %s\n",

icache_status() ? "ON" : "OFF");

return 0;

default: //其他缺省情况下,打印命令使用说明

printf ("Usage:\n%s\n", cmdtp->usage);

return 1;

}

return 0;

}

……

U_Boot_CMD( //通过宏定义命令

icache, 2, 1, do_icache, //命令为icache,命令执行函数为do_icache()

"icache - enable or disable instruction cache\n", //帮助信息

"[on, off]\n"

" - enable or disable instruction cache\n"

);

……

#endif

U-Boot的命令都是通过结构体__U_Boot_cmd_##name来描述的。根据U_Boot_CMD在include/command.h中的两行定义可以明白。

#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \

cmd_tbl_t __u_boot_cmd_##name Struct_Section = {#name, maxargs, rep, cmd, usage, help}

还有,不要忘了在common/Makefile中添加编译的目标文件。

(3)打开CONFIG_COMMANDS选项的命令标志位。这个程序文件开头有#if语句需要预处理是否包含这个命令函数。CONFIG_COMMANDS选项在开发板的配置文件中定义。例如:SMDK2410平台在include/configs/smdk2410.h中有如下定义。

/***********************************************************

* Command definition

***********************************************************/

#define CONFIG_COMMANDS \

(CONFIG_CMD_DFL | \

CFG_CMD_CACHE | \

CFG_CMD_REGINFO | \

CFG_CMD_DATE | \

CFG_CMD_ELF)

按照这3步,就可以添加新的U-Boot命令。

6.3 U-Boot的调试

新移植的U-Boot不能正常工作,这时就需要调试了。调试U-Boot离不开工具,只有理解U-Boot启动过程,才能正确地调试U-Boot源码。

6.3.1 硬件调试器

硬件电路板制作完成以后,这时上面还没有任何程序,就叫作裸板。首要的工作是把程序或者固件加载到裸板上,这就要通过硬件工具来完成。习惯上,这种硬件工具叫作仿真器。

仿真器可以通过处理器的JTAG等接口控制板子,直接把程序下载到目标板内存,或者进行Flash编程。如果板上的Flash是可以拔插的,就可以通过专用的Flash烧写器来完成。在第4章介绍过目标板跟主机之间的连接,其中JTAG等接口就是专门用来连接仿真器的。

仿真器还有一个重要的功能就是在线调试程序,这对于调试Bootloader和硬件测试程序很有用。

从最简单的JTAG电缆,到ICE仿真器,再到可以调试Linux内核的仿真器。

复杂的仿真器可以支持与计算机间的以太网或者USB接口通信。

对于U-Boot的调试,可以采用BDI2000。BDI2000完全可以反汇编地跟踪Flash中的程序,也可以进行源码级的调试。

使用BDI2000调试U-boot的方法如下。

(1)配置BDI2000和目标板初始化程序,连接目标板。

(2)添加U-Boot的调试编译选项,重新编译。

U-Boot的程序代码是位置相关的,调试的时候尽量在内存中调试,可以修改连接定位地址TEXT_BASE。TEXT_BASE在board/<board_name>/config.mk中定义。

另外,如果有复位向量也需要先从链接脚本中去掉。链接脚本是board/<board_name>/
u-boot.lds。

添加调试选项,在config.mk文件中查找,DBGFLAGS,加上-g选项。然后重新编译U-Boot。

(3)下载U-Boot到目标板内存。

通过BDI2000的下载命令LOAD,把程序加载到目标板内存中。然后跳转到U-Boot入口。

(4)启动GDB调试。

启动GDB调试,这里是交叉调试的GDB。GDB与BDI2000建立链接,然后就可以设置断点执行了。

$ arm-linux-gdb u-boot

(gdb)target remote 192.168.1.100:2001

(gdb)stepi

(gdb)b start_armboot

(gdb)c

6.3.2 软件跟踪

假如U-Boot没有任何串口打印信息,手头又没有硬件调试工具,那样怎么知道U-Boot执行到什么地方了呢?可以通过开发板上的LED指示灯判断。

开发板上最好设计安装八段数码管等LED,可以用来显示数字或者数字位。

U-Boot可以定义函数show_boot_progress (int status),用来指示当前启动进度。在include/common.h头文件中声明这个函数。

#ifdef CONFIG_SHOW_BOOT_PROGRESS

void show_boot_progress (int status);

#endif

CONFIG_SHOW_BOOT_PROGRESS是需要定义的。这个在板子配置的头文件中定义。CSB226开发板对这项功能有完整实现,可以参考。在头文件include/configs/csb226.h中,有下列一行。

#define CONFIG_SHOW_BOOT_PROGRESS 1

函数show_boot_progress (int status)的实现跟开发板关系密切,所以一般在board目录下的文件中实现。看一下CSB226在board/csb226/csb226.c中的实现函数。

/** 设置CSB226板的0、1、2三个指示灯的开关状态

* csb226_set_led: - switch LEDs on or off

* @param led: LED to switch (0,1,2)

* @param state: switch on (1) or off (0)

*/

void csb226_set_led(int led, int state)

{

switch(led) {

case 0: if (state==1) {

GPCR0 |= CSB226_USER_LED0;

} else if (state==0) {

GPSR0 |= CSB226_USER_LED0;

}

break;

case 1: if (state==1) {

GPCR0 |= CSB226_USER_LED1;

} else if (state==0) {

GPSR0 |= CSB226_USER_LED1;

}

break;

case 2: if (state==1) {

GPCR0 |= CSB226_USER_LED2;

} else if (state==0) {

GPSR0 |= CSB226_USER_LED2;

}

break;

}

return;

}

/** 显示启动进度函数,在比较重要的阶段,设置三个灯为亮的状态(1, 5, 15)*/

void show_boot_progress (int status)

{

switch(status) {

case 1: csb226_set_led(0,1); break;

case 5: csb226_set_led(1,1); break;

case 15: csb226_set_led(2,1); break;

}

return;

}

这样,在U-Boot启动过程中就可以通过show_boot_progresss指示执行进度。比如hang()函数是系统出错时调用的函数,这里需要根据特定的开发板给定显示的参数值。

void hang (void)

{

puts ("### ERROR ### Please RESET the board ###\n");

#ifdef CONFIG_SHOW_BOOT_PROGRESS

show_boot_progress(-30);

#endif

for (;;);

6.3.3 U-Boot启动过程

尽管有了调试跟踪手段,甚至也可以通过串口打印信息了,但是不一定能够判断出错原因。如果能够充分理解代码的启动流程,那么对准确地解决和分析问题很有帮助。

开发板上电后,执行U-Boot的第一条指令,然后顺序执行U-Boot启动函数。函数调用顺序如图6.3所示。

看一下board/smsk2410/u-boot.lds这个链接脚本,可以知道目标程序的各部分链接顺序。第一个要链接的是cpu/arm920t/start.o,那么U-Boot的入口指令一定位于这个程序中。下面详细分析一下程序跳转和函数的调用关系以及函数实现。

1.cpu/arm920t/start.S

这个汇编程序是U-Boot的入口程序,开头就是复位向量的代码。

0 && image.height>0){if(image.width>=700){this.width=700;this.height=image.height*700/image.width;}}" alt="" src="file:///D:/Documents%20and%20Settings/xian/Local%20Settings/Temp/CyberArticle/30_files/image006%5B1%5D.gif" width="111" border="0" height="301">

图6.3 U-Boot启动代码流程图

_start: b reset //复位向量

ldr pc, _undefined_instruction

ldr pc, _software_interrupt

ldr pc, _prefetch_abort

ldr pc, _data_abort

ldr pc, _not_used

ldr pc, _irq //中断向量

ldr pc, _fiq //中断向量



/* the actual reset code */

reset: //复位启动子程序

/* 设置CPU为SVC32模式 */

mrs r0,cpsr

bic r0,r0,#0x1f

orr r0,r0,#0xd3

msr cpsr,r0

/* 关闭看门狗 */

/* 这些初始化代码在系统重起的时候执行,运行时热复位从RAM中启动不执行 */

#ifdef CONFIG_INIT_CRITICAL

bl cpu_init_crit

#endif

relocate: /* 把U-Boot重新定位到RAM */

adr r0, _start /* r0是代码的当前位置 */

ldr r1, _TEXT_BASE /* 测试判断是从Flash启动,还是RAM */

cmp r0, r1 /* 比较r0和r1,调试的时候不要执行重定位 */

beq stack_setup /* 如果r0等于r1,跳过重定位代码 */

/* 准备重新定位代码 */

ldr r2, _armboot_start

ldr r3, _bss_start

sub r2, r3, r2 /* r2 得到armboot的大小 */

add r2, r0, r2 /* r2 得到要复制代码的末尾地址 */

copy_loop: /* 重新定位代码 */

ldmia r0!, {r3-r10} /*从源地址[r0]复制 */

stmia r1!, {r3-r10} /* 复制到目的地址[r1] */

cmp r0, r2 /* 复制数据块直到源数据末尾地址[r2] */

ble copy_loop

/* 初始化堆栈等 */

stack_setup:

ldr r0, _TEXT_BASE /* 上面是128 KiB重定位的u-boot */

sub r0, r0, #CFG_MALLOC_LEN /* 向下是内存分配空间 */

sub r0, r0, #CFG_GBL_DATA_SIZE /* 然后是bdinfo结构体地址空间 */

#ifdef CONFIG_USE_IRQ

sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)

#endif

sub sp, r0, #12 /* 为abort-stack预留3个字 */

clear_bss:

ldr r0, _bss_start /* 找到bss段起始地址 */

ldr r1, _bss_end /* bss段末尾地址 */

mov r2, #0x00000000 /* 清零 */

clbss_l:str r2, [r0] /* bss段地址空间清零循环... */

add r0, r0, #4

cmp r0, r1

bne clbss_l

/* 跳转到start_armboot函数入口,_start_armboot字保存函数入口指针 */

ldr pc, _start_armboot

_start_armboot: .word start_armboot //start_armboot函数在lib_arm/board.c中实现

/* 关键的初始化子程序 */

cpu_init_crit:

…… //初始化CACHE,关闭MMU等操作指令

/* 初始化RAM时钟。

* 因为内存时钟是依赖开发板硬件的,所以在board的相应目录下可以找到memsetup.S文件。

*/

mov ip, lr

bl memsetup//memsetup子程序在board/smdk2410/memsetup.S中实现

mov lr, ip

mov pc, lr

2.lib_arm/board.c

start_armboot是U-Boot执行的第一个C语言函数,完成系统初始化工作,进入主循环,处理用户输入的命令。

void start_armboot (void)

{

DECLARE_GLOBAL_DATA_PTR;

ulong size;

init_fnc_t **init_fnc_ptr;

char *s;

/* Pointer is writable since we allocated a register for it */

gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));

/* compiler optimization barrier needed for GCC >= 3.4 */

__asm__ __volatile__("": : :"memory");

memset ((void*)gd, 0, sizeof (gd_t));

gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));

memset (gd->bd, 0, sizeof (bd_t));

monitor_flash_len = _bss_start - _armboot_start;

/* 顺序执行init_sequence数组中的初始化函数 */

for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {

if ((*init_fnc_ptr)() != 0) {

hang ();

}

}

/*配置可用的Flash */

size = flash_init ();

display_flash_config (size);

/* _armboot_start 在u-boot.lds链接脚本中定义 */

mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);

/* 配置环境变量,重新定位 */

env_relocate ();

/* 从环境变量中获取IP地址 */

gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");

/* 以太网接口MAC 地址 */

……

devices_init (); /* 获取列表中的设备 */

jumptable_init ();

console_init_r (); /* 完整地初始化控制台设备 */

enable_interrupts (); /* 使能例外处理 */

/* 通过环境变量初始化 */

if ((s = getenv ("loadaddr")) != NULL) {

load_addr = simple_strtoul (s, NULL, 16);

}

/* main_loop()总是试图自动启动,循环不断执行 */

for (;;) {

main_loop (); /* 主循环函数处理执行用户命令 -- common/main.c */

}

/* NOTREACHED - no way out of command loop except booting */

}

3.init_sequence[]

init_sequence[]数组保存着基本的初始化函数指针。这些函数名称和实现的程序文件在下列注释中。

init_fnc_t *init_sequence[] = {

cpu_init, /* 基本的处理器相关配置 -- cpu/arm920t/cpu.c */

board_init, /* 基本的板级相关配置 -- board/smdk2410/smdk2410.c */

interrupt_init, /* 初始化例外处理 -- cpu/arm920t/s3c24x0/interrupt.c */

env_init, /* 初始化环境变量 -- common/cmd_flash.c */

init_baudrate, /* 初始化波特率设置 -- lib_arm/board.c */

serial_init, /* 串口通讯设置 -- cpu/arm920t/s3c24x0/serial.c */

console_init_f, /* 控制台初始化阶段1 -- common/console.c */

display_banner, /* 打印u-boot信息 -- lib_arm/board.c */

dram_init, /* 配置可用的RAM -- board/smdk2410/smdk2410.c */

display_dram_config, /* 显示RAM的配置大小 -- lib_arm/board.c */

NULL,

};

6.3.4 U-Boot与内核的关系

U-Boot作为Bootloader,具备多种引导内核启动的方式。常用的go和bootm命令可以直接引导内核映像启动。U-Boot与内核的关系主要是内核启动过程中参数的传递。

1.go命令的实现

/* common/cmd_boot.c */

int do_go (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{

ulong addr, rc;

int rcode = 0;

if (argc < 2) {

printf ("Usage:\n%s\n", cmdtp->usage);

return 1;

}

addr = simple_strtoul(argv[1], NULL, 16);

printf ("## Starting application at 0x%08lX ...\n", addr);

/*

* pass address parameter as argv[0] (aka command name),

* and all remaining args

*/

rc = ((ulong (*)(int, char *[]))addr) (--argc, &argv[1]);

if (rc != 0) rcode = 1;

printf ("## Application terminated, rc = 0x%lX\n", rc);

return rcode;

}

go命令调用do_go()函数,跳转到某个地址执行的。如果在这个地址准备好了自引导的内核映像,就可以启动了。尽管go命令可以带变参,实际使用时一般不用来传递参数。

2.bootm命令的实现

/* common/cmd_bootm.c */

int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])

{

ulong iflag;

ulong addr;

ulong data, len, checksum;

ulong *len_ptr;

uint unc_len = 0x400000;

int i, verify;

char *name, *s;

int (*appl)(int, char *[]);

image_header_t *hdr = &header;

s = getenv ("verify");

verify = (s && (*s == 'n')) ? 0 : 1;

if (argc < 2) {

addr = load_addr;

} else {

addr = simple_strtoul(argv[1], NULL, 16);

}

SHOW_BOOT_PROGRESS (1);

printf ("## Booting image at %08lx ...\n", addr);

/* Copy header so we can blank CRC field for re-calculation */

memmove (&header, (char *)addr, sizeof(image_header_t));

if (ntohl(hdr->ih_magic) != IH_MAGIC)

{

puts ("Bad Magic Number\n");

SHOW_BOOT_PROGRESS (-1);

return 1;

}

SHOW_BOOT_PROGRESS (2);

data = (ulong)&header;

len = sizeof(image_header_t);

checksum = ntohl(hdr->ih_hcrc);

hdr->ih_hcrc = 0;

if(crc32 (0, (char *)data, len) != checksum) {

puts ("Bad Header Checksum\n");

SHOW_BOOT_PROGRESS (-2);

return 1;

}

SHOW_BOOT_PROGRESS (3);

/* for multi-file images we need the data part, too */

print_image_hdr ((image_header_t *)addr);

data = addr + sizeof(image_header_t);

len = ntohl(hdr->ih_size);

if(verify) {

puts (" Verifying Checksum ... ");

if(crc32 (0, (char *)data, len) != ntohl(hdr->ih_dcrc)) {

printf ("Bad Data CRC\n");

SHOW_BOOT_PROGRESS (-3);

return 1;

}

puts ("OK\n");

}

SHOW_BOOT_PROGRESS (4);

len_ptr = (ulong *)data;

……

switch (hdr->ih_os) {

default: /* handled by (original) Linux case */

case IH_OS_LINUX:

do_bootm_linux (cmdtp, flag, argc, argv,

addr, len_ptr, verify);

break;

……

}

bootm命令调用do_bootm函数。这个函数专门用来引导各种操作系统映像,可以支持引导Linux、vxWorks、QNX等操作系统。引导Linux的时候,调用do_bootm_linux()函数。

3.do_bootm_linux函数的实现

/* lib_arm/armlinux.c */

void do_bootm_linux (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],

ulong addr, ulong *len_ptr, int verify)

{

DECLARE_GLOBAL_DATA_PTR;

ulong len = 0, checksum;

ulong initrd_start, initrd_end;

ulong data;

void (*theKernel)(int zero, int arch, uint params);

image_header_t *hdr = &header;

bd_t *bd = gd->bd;

#ifdef CONFIG_CMDLINE_TAG

char *commandline = getenv ("bootargs");

#endif

theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);

/* Check if there is an initrd image */

if(argc >= 3) {

SHOW_BOOT_PROGRESS (9);

addr = simple_strtoul (argv[2], NULL, 16);

printf ("## Loading Ramdisk Image at %08lx ...\n", addr);

/* Copy header so we can blank CRC field for re-calculation */

memcpy (&header, (char *) addr, sizeof (image_header_t));

if (ntohl (hdr->ih_magic) != IH_MAGIC) {

printf ("Bad Magic Number\n");

SHOW_BOOT_PROGRESS (-10);

do_reset (cmdtp, flag, argc, argv);

}

data = (ulong) & header;

len = sizeof (image_header_t);

checksum = ntohl (hdr->ih_hcrc);

hdr->ih_hcrc = 0;

if(crc32 (0, (char *) data, len) != checksum) {

printf ("Bad Header Checksum\n");

SHOW_BOOT_PROGRESS (-11);

do_reset (cmdtp, flag, argc, argv);

}

SHOW_BOOT_PROGRESS (10);

print_image_hdr (hdr);

data = addr + sizeof (image_header_t);

len = ntohl (hdr->ih_size);

if(verify) {

ulong csum = 0;

printf (" Verifying Checksum ... ");

csum = crc32 (0, (char *) data, len);

if (csum != ntohl (hdr->ih_dcrc)) {

printf ("Bad Data CRC\n");

SHOW_BOOT_PROGRESS (-12);

do_reset (cmdtp, flag, argc, argv);

}

printf ("OK\n");

}

SHOW_BOOT_PROGRESS (11);

if ((hdr->ih_os != IH_OS_LINUX) ||

(hdr->ih_arch != IH_CPU_ARM) ||

(hdr->ih_type != IH_TYPE_RAMDISK)) {

printf ("No Linux ARM Ramdisk Image\n");

SHOW_BOOT_PROGRESS (-13);

do_reset (cmdtp, flag, argc, argv);

}

/* Now check if we have a multifile image */

} else if ((hdr->ih_type == IH_TYPE_MULTI) && (len_ptr[1])) {

ulong tail = ntohl (len_ptr[0]) % 4;

int i;

SHOW_BOOT_PROGRESS (13);

/* skip kernel length and terminator */

data = (ulong) (&len_ptr[2]);

/* skip any additional image length fields */

for (i = 1; len_ptr[i]; ++i)

data += 4;

/* add kernel length, and align */

data += ntohl (len_ptr[0]);

if (tail) {

data += 4 - tail;

}

len = ntohl (len_ptr[1]);

} else {

/* no initrd image */

SHOW_BOOT_PROGRESS (14);

len = data = 0;

}

if (data) {

initrd_start = data;

initrd_end = initrd_start + len;

} else {

initrd_start = 0;

initrd_end = 0;

}

SHOW_BOOT_PROGRESS (15);

debug ("## Transferring control to Linux (at address %08lx) ...\n",

(ulong) theKernel);

#if defined (CONFIG_SETUP_MEMORY_TAGS) || \

defined (CONFIG_CMDLINE_TAG) || \

defined (CONFIG_INITRD_TAG) || \

defined (CONFIG_SERIAL_TAG) || \

defined (CONFIG_REVISION_TAG) || \

defined (CONFIG_LCD) || \

defined (CONFIG_VFD)

setup_start_tag (bd);

#ifdef CONFIG_SERIAL_TAG

setup_serial_tag (¶ms);

#endif

#ifdef CONFIG_REVISION_TAG

setup_revision_tag (¶ms);

#endif

#ifdef CONFIG_SETUP_MEMORY_TAGS

setup_memory_tags (bd);

#endif

#ifdef CONFIG_CMDLINE_TAG

setup_commandline_tag (bd, commandline);

#endif

#ifdef CONFIG_INITRD_TAG

if (initrd_start && initrd_end)

setup_initrd_tag (bd, initrd_start, initrd_end);

#endif

setup_end_tag (bd);

#endif

/* we assume that the kernel is in place */

printf ("\nStarting kernel ...\n\n");

cleanup_before_linux ();

theKernel (0, bd->bi_arch_number, bd->bi_boot_params);

}

do_bootm_linux()函数是专门引导Linux映像的函数,它还可以处理ramdisk文件系统的映像。这里引导的内核映像和ramdisk映像,必须是U-Boot格式的。U-Boot格式的映像可以通过mkimage工具来转换,其中包含了U-Boot可以识别的符号。

6.4 使用U-Boot

U-Boot是“Monitor”。除了Bootloader的系统引导功能,它还有用户命令接口,提供了一些复杂的调试、读写内存、烧写Flash、配置环境变量等功能。掌握U-Boot的使用,将极大地方便嵌入式系统的开发。

6.4.1 烧写U-Boot到Flash

新开发的电路板没有任何程序可以执行,也就不能启动,需要先将U-Boot烧写到Flash中。

如果主板上的EPROM或者Flash能够取下来,就可以通过编程器烧写。例如:计算机BIOS就存储在一块256KB的Flash上,通过插座与主板连接。

但是多数嵌入式单板使用贴片的Flash,不能取下来烧写。这种情况可以通过处理器的调试接口,直接对板上的Flash编程。

处理器调试接口是为处理器芯片设计的标准调试接口,包含BDM、JTAG和EJTAG 3种接口标准。JTAG接口在第4章已经介绍过;BDM(Background Debug Mode)主要应用在PowerPC8xx系列处理器上;EJTAG主要应用在MIPS处理器上。这3种硬件接口标准定义有所不同,但是功能基本相同,下面都统称为JTAG接口。

JTAG接口需要专用的硬件工具来连接。无论从功能、性能角度,还是从价格角度,这些工具都有很大差异。关于这些工具的选择,将在第6.4.1节详细介绍。

最简单方式就是通过JTAG电缆,转接到计算机并口连接。这需要在主机端开发烧写程序,还需要有并口设备驱动程序。开发板上电或者复位的时候,烧写程序探测到处理器并且开始通信,然后把Bootloader下载并烧写到Flash中。这种方式速率很慢,可是价格非常便宜。一般来说,平均每秒钟可以烧写100~200个字节。

烧写完成后,复位实验板,串口终端应该显示U-Boot的启动信息。

6.4.2 U-Boot的常用命令

U-Boot上电启动后,敲任意键可以退出自动启动状态,进入命令行。

U-Boot 1.1.2 (Apr 26 2005 - 12:27:13)

U-Boot code: 11080000 -> 1109614C BSS: -> 1109A91C

RAM Configuration:

Bank #0: 10000000 32 MB

Micron StrataFlash MT28F128J3 device initialized

Flash: 32 MB

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

U-Boot>

在命令行提示符下,可以输入U-Boot的命令并执行。U-Boot可以支持几十个常用命令,通过这些命令,可以对开发板进行调试,可以引导Linux内核,还可以擦写Flash完成系统部署等功能。掌握这些命令的使用,才能够顺利地进行嵌入式系统的开发。

输入help命令,可以得到当前U-Boot的所有命令列表。每一条命令后面是简单的命令说明。

=> help

? - alias for 'help'

autoscr - run script from memory

base - print or set address offset

bdinfo - print Board Info structure

boot - boot default, i.e., run 'bootcmd'

bootd - boot default, i.e., run 'bootcmd'

bootm - boot application image from memory

bootp - boot image via network using BootP/TFTP protocol

cmp - memory compare

coninfo - print console devices and information

cp - memory copy

crc32 - checksum calculation

dhcp - invoke DHCP client to obtain IP/boot params

echo - echo args to console

erase - erase FLASH memory

flinfo - print FLASH memory information

go - start application at address 'addr'

help - print online help

iminfo - print header information for application image

imls - list all images found in flash

itest - return true/false on integer compare

loadb - load binary file over serial line (kermit mode)

loads - load S-Record file over serial line

loop - infinite loop on address range

md - memory display

mm - memory modify (auto-incrementing)

mtest - simple RAM test

mw - memory write (fill)

nfs - boot image via network using NFS protocol

nm - memory modify (constant address)

printenv - print environment variables

protect - enable or disable FLASH write protection

rarpboot - boot image via network using RARP/TFTP protocol

reset - Perform RESET of the CPU

run - run commands in an environment variable

saveenv - save environment variables to persistent storage

setenv - set environment variables

sleep - delay execution for some time

tftpboot - boot image via network using TFTP protocol

version - print monitor version

=>

U-Boot还提供了更加详细的命令帮助,通过help命令还可以查看每个命令的参数说明。由于开发过程的需要,有必要先把U-Boot命令的用法弄清楚。接下来,根据每一条命令的帮助信息,解释一下这些命令的功能和参数。

=> help bootm

bootm [addr [arg ...]]

- boot application image stored in memory

passing arguments 'arg ...'; when booting a Linux kernel,

'arg' can be the address of an initrd image

bootm命令可以引导启动存储在内存中的程序映像。这些内存包括RAM和可以永久保存的Flash。

第1个参数addr是程序映像的地址,这个程序映像必须转换成U-Boot的格式。

第2个参数对于引导Linux内核有用,通常作为U-Boot格式的RAMDISK映像存储地址;也可以是传递给Linux内核的参数(缺省情况下传递bootargs环境变量给内核)。

=> help bootp

bootp [loadAddress] [bootfilename]

bootp命令通过bootp请求,要求DHCP服务器分配IP地址,然后通过TFTP协议下载指定的文件到内存。

第1个参数是下载文件存放的内存地址。

第2个参数是要下载的文件名称,这个文件应该在开发主机上准备好。

=> help cmp

cmp [.b, .w, .l] addr1 addr2 count

- compare memory

cmp命令可以比较2块内存中的内容。.b以字节为单位;.w以字为单位;.l以长字为单位。注意:cmp.b中间不能保留空格,需要连续敲入命令。

第1个参数addr1是第一块内存的起始地址。

第2个参数addr2是第二块内存的起始地址。

第3个参数count是要比较的数目,单位按照字节、字或者长字。

=> help cp

cp [.b, .w, .l] source target count

- copy memory

cp命令可以在内存中复制数据块,包括对Flash的读写操作。

第1个参数source是要复制的数据块起始地址。

第2个参数target是数据块要复制到的地址。这个地址如果在Flash中,那么会直接调用写Flash的函数操作。所以U-Boot写Flash就使用这个命令,当然需要先把对应Flash区域擦干净。

第3个参数count是要复制的数目,根据cp.b cp.w cp.l分别以字节、字、长字为单位。

=> help crc32

crc32 address count [addr]

- compute CRC32 checksum [save at addr]

crc32命令可以计算存储数据的校验和。

第1个参数address是需要校验的数据起始地址。

第2个参数count是要校验的数据字节数。

第3个参数addr用来指定保存结果的地址。

=> help echo

echo [args..]

- echo args to console; \c suppresses newline

echo命令回显参数。

=> help erase

erase start end

- erase FLASH from addr 'start' to addr 'end'

erase N:SF[-SL]

- erase sectors SF-SL in FLASH bank # N

erase bank N

- erase FLASH bank # N

erase all

- erase all FLASH banks

erase命令可以擦Flash。

参数必须指定Flash擦除的范围。

按照起始地址和结束地址,start必须是擦除块的起始地址;end必须是擦除末尾块的结束地址。这种方式最常用。举例说明:擦除0x20000 – 0x3ffff区域命令为erase 20000 3ffff。

按照组和扇区,N表示Flash的组号,SF表示擦除起始扇区号,SL表示擦除结束扇区号。另外,还可以擦除整个组,擦除组号为N的整个Flash组。擦除全部Flash只要给出一个all的参数即可。

=> help flinfo

flinfo

- print information for all FLASH memory banks

flinfo N

- print information for FLASH memory bank # N

flinfo命令打印全部Flash组的信息,也可以只打印其中某个组。一般嵌入式系统的Flash只有一个组。

=> help go

go addr [arg ...]

- start application at address 'addr'

passing 'arg' as arguments

go命令可以执行应用程序。

第1个参数是要执行程序的入口地址。

第2个可选参数是传递给程序的参数,可以不用。

=> help iminfo

iminfo addr [addr ...]

- print header information for application image starting at

address 'addr' in memory; this includes verification of the

image contents (magic number, header and payload checksums)

iminfo可以打印程序映像的开头信息,包含了映像内容的校验(序列号、头和校验和)。

第1个参数指定映像的起始地址。

可选的参数是指定更多的映像地址。

=> help loadb

loadb [ off ] [ baud ]

- load binary file over serial line with offset 'off' and baudrate 'baud'

loadb命令可以通过串口线下载二进制格式文件。

=> help loads

loads [ off ]

- load S-Record file over serial line with offset 'off'

loads命令可以通过串口线下载S-Record格式文件。

=> help mw

mw [.b, .w, .l] address value [count]

- write memory

mw命令可以按照字节、字、长字写内存,.b .w .l的用法与cp命令相同。

第1个参数address是要写的内存地址。

第2个参数value是要写的值。

第3个可选参数count是要写单位值的数目。

=> help nfs

nfs [loadAddress] [host ip addr:bootfilename]

nfs命令可以使用NFS网络协议通过网络启动映像。

=> help nm

nm [.b, .w, .l] address

- memory modify, read and keep address

nm命令可以修改内存,可以按照字节、字、长字操作。

参数address是要读出并且修改的内存地址。

=> help printenv

printenv

- print values of all environment variables

printenv name ...

- print value of environment variable 'name'

printenv命令打印环境变量。

可以打印全部环境变量,也可以只打印参数中列出的环境变量。

=> help protect

protect on start end

- protect Flash from addr 'start' to addr 'end'

protect on N:SF[-SL]

- protect sectors SF-SL in Flash bank # N

protect on bank N

- protect Flash bank # N

protect on all

- protect all Flash banks

protect off start end

- make Flash from addr 'start' to addr 'end' writable

protect off N:SF[-SL]

- make sectors SF-SL writable in Flash bank # N

protect off bank N

- make Flash bank # N writable

protect off all

- make all Flash banks writable

protect命令是对Flash写保护的操作,可以使能和解除写保护。

第1个参数on代表使能写保护;off代表解除写保护。

第2、3参数是指定Flash写保护操作范围,跟擦除的方式相同。

=> help rarpboot

rarpboot [loadAddress] [bootfilename]

rarboot命令可以使用TFTP协议通过网络启动映像。也就是把指定的文件下载到指定地址,然后执行。

第1个参数是映像文件下载到的内存地址。

第2个参数是要下载执行的映像文件。

=> help run

run var [...]

- run the commands in the environment variable(s) 'var'

run命令可以执行环境变量中的命令,后面参数可以跟几个环境变量名。

=> help setenv

setenv name value ...

- set environment variable 'name' to 'value ...'

setenv name

- delete environment variable 'name'

setenv命令可以设置环境变量。

第1个参数是环境变量的名称。

第2个参数是要设置的值,如果没有第2个参数,表示删除这个环境变量。

=> help sleep

sleep N

- delay execution for N seconds (N is _decimal_ !!!)

sleep命令可以延迟N秒钟执行,N为十进制数。

=> help tftpboot

tftpboot [loadAddress] [bootfilename]

tftpboot命令可以使用TFTP协议通过网络下载文件。按照二进制文件格式下载。另外使用这个命令,必须配置好相关的环境变量。例如serverip和ipaddr。

第1个参数loadAddress是下载到的内存地址。

第2个参数是要下载的文件名称,必须放在TFTP服务器相应的目录下。

这些U-Boot命令为嵌入式系统提供了丰富的开发和调试功能。在Linux内核启动和调试过程中,都可以用到U-Boot的命令。但是一般情况下,不需要使用全部命令。比如已经支持以太网接口,可以通过tftpboot命令来下载文件,那么还有必要使用串口下载的loadb吗?反过来,如果开发板需要特殊的调试功能,也可以添加新的命令。

在建立交叉开发环境和调试Linux内核等章节时,在ARM平台上移植了U-Boot,并且提供了具体U-Boot的操作步骤。

6.4.3 U-Boot的环境变量

有点类似Shell,U-Boot也使用环境变量。可以通过printenv命令查看环境变量的设置。

U-Boot> printenv

bootdelay=3

baudrate=115200

netmask=255.255.0.0

ethaddr=12:34:56:78:90:ab

bootfile=uImage

bootargs=console=ttyS0,115200 root=/dev/ram rw initrd=0x30800000,8M

bootcmd=tftp 0x30008000 zImage;go 0x30008000

serverip=192.168.1.1

ipaddr=192.168.1.100

stdin=serial

stdout=serial

stderr=serial

Environment size: 337/131068 bytes

U-Boot>

表6.5是常用环境变量的含义解释。通过printenv命令可以打印出这些变量的值。

表6.5 U-Boot环境变量的解释说明

环 境 变 量

解 释 说 明

bootdelay

定义执行自动启动的等候秒数

baudrate

定义串口控制台的波特率

netmask

定义以太网接口的掩码

ethaddr

定义以太网接口的MAC地址

bootfile

定义缺省的下载文件

bootargs

定义传递给Linux内核的命令行参数

bootcmd

定义自动启动时执行的几条命令

serverip

定义tftp服务器端的IP地址

ipaddr

定义本地的IP地址

stdin

定义标准输入设备,一般是串口

stdout

定义标准输出设备,一般是串口

stderr

定义标准出错信息输出设备,一般是串口

U-Boot的环境变量都可以有缺省值,也可以修改并且保存在参数区。U-Boot的参数区一般有EEPROM和Flash两种设备。

环境变量的设置命令为setenv,在6.2.2节有命令的解释。

举例说明环境变量的使用。

=>setenv serverip 192.168.1.1

=>setenv ipaddr 192.168.1.100

=>setenv rootpath "/usr/local/arm/3.3.2/rootfs"

=>setenv bootargs "root=/dev/nfs rw nfsroot=\$(serverip):\$(rootpath) ip=
\$(ipaddr) "

=>setenv kernel_addr 30000000

=>setenv nfscmd "tftp \$(kernel_addr) uImage; bootm \$(kernel_addr) "

=>run nfscmd

上面定义的环境变量有serverip ipaddr rootpath bootargs kernel_addr。环境变量bootargs中还使用了环境变量,bootargs定义命令行参数,通过bootm命令传递给内核。环境变量nfscmd中也使用了环境变量,功能是把uImage下载到指定的地址并且引导起来。可以通过run命令执行nfscmd脚本。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: